217-8080 TALON SRX Software Reference Manual 2/26/2015

TALON SRX Software Reference Manual

Rev 1.5

CROSS A, I
te ROAD

Cross The Road Electronics

WwWW.crosstheroadelectronics.com

Cross The Road Electronics Page 1 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

Table of Contents

1. CAN DUS DEVICE BASICS ...ceeeeiiiiiiiiiiiiiiiiiiiiiiiiee ettt ettt ettt ettt et e e et e e e e e e e e e e eeeeeeees 8
2. roboRIO Web-based Configuration: Firmware and diagnostiCSceeeevieeeiiiiiiiiiiiii e, 9
2.1, DEVICE ID FANQES. .. i ieeeiiiiit et e e ettt e e e e e ettt e et e e e e et ee et aaaaaeaeeeeastt s e aaaaeeesssttaaaaaeaeeesnnees 9
2.2. COMMON ID TaIONS ... eas 10
2.3. Firmware Field-upgrade a Talon SRXcoooiiiiiiiii et 12
2.3.1. When | update firmware, | get “You do not have permissions...”ccevvvvvvvnnnnnn. 14
2.3.2. What if Firmware Field-upgrade is interrupted?...........oovvieeiieeeiiieeiee e, 16
2.3.3. Other Field-upgrade Failure MOES...............uuuiuiiimmiiiiiiiiiiiiiiiiiiiiiiiiieneeeeeeeeeeneees 17
2.3.4. Where t0 get CRF fil@S? . .uu e 18
2 S T Bt e 19
2.4.1. Clearing StICKY FAUILSccoiiiiiiecci e e e e e 21
2.5, CUSEOM NAIMIES ...ttt e et e e e et e e e e e e e e e rrr i n s e e eees 22
2.5.1. Re-default CUSTOM NAMEuiiiiiiiiiiiiiii bbb nneenennnne 23
3. Creating a Talon Object (and basiC ArVE)uuuiiiiii e e 24
3.1. Programming APl and DEVICE ID.......cccooiiiiieeeeeeeee e 24
3.2. New Classes/Virtual INStrUMENTS.ooiiiiiiiiiiii e e e 24
G 0 T 1= 1)Y 4 1 L 25
I O TP TUPPPTTR 26
R TN - AV BT PP P PP PP TPTRRPP 26
3.6 ChaNGiNG MOGE ... 27
3.8 L. LADVIEW ..ttt 27
I T O PSPPSRI 27
R TG TR FRN - 7 PP PRPTT 27
3.6.4. Check Control Mode With Self-TeStcccoeiiiiieeee e 28
4. Limit Switch and Neutral Brake MOE............coouiiiiiiiiieeee s 29
4.1, DEfAUIL SEEINGSce i i eeeeee e 29
4.2. roboRIO Web-based Configuration: Limit Switch and Brakeccoooooiiiiiiiiniiiineens 30
4.3. Overriding Brake and Limit Switch With APL..........ooooi 31
2 0 O = o Y4 Y PP 32
T O o TP TRTUPPPTTROPPIN 32
G T T T AV - LSRR 32
4.4. Changing limit switch mode between “Normally Open” or “Normally Closed” 33

Cross The Road Electronics Page 2 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

QA1 LADVIEW 33

N O TP PRP PR 33

L N -\ PP 33
5. Getting Status and SIgNalS.........cooviiiiiiiiiii e 34
ST I = 1o LY SRR 35
I O U UPPPTT 36
5.3 JAVA 37
6. Setting the RAMP RALE........ooiiiiiieii e e e e a e e e e e anns 38
8.1, LADVIEWV L. 38
I O U OPPPPUPPPRTR 38
5.3, JAVA . 38
6.4. What is the slowest ramp POSSIDIE?cooiriiiiiiei e 38
7. Selecting @ FEEUDACK DBVICEccciii i 39
7.0 LADVIEW ...ttt ettt 39
A O TP P PO TPPTRPPRPP 39
7.3 JAVA 40
7.4. Reversing sensor direction, Dest PractiCes.coiiii i 41
8. SOt LIMILS ... eteeee ettt et oo e ettt e e e e e e s r et e e e e e e e e e e e e e e aaa 42
8.1 LADVIEW ...ttt 42
ST O PR 43
8.3 JAVA .. 43
9. FOHIOWET IMOTE ...ttt ettt e e e e e e e e e e e e e et e e e e e e e e e aae 44
0.1 LABVIEW ...tttk 44
T O TP PPPRPP 44
0.3, JAVA s 44
O I @4 o F==To Bt o o oI 1 o T =P 45
11. Motor Control Profile Parametersuuviiiiiiiiiiiiiii e 45
11.1. Persistent storage and Reset/Startup behavioroiiiiiiiici e, 46
11.2. INSPECLING SIGN@US ..cceeiiiieteee ettt e e e e e e e e e e e et e e e e e e e e e e nnneeees 48
12. Position/Velocity Closed-Loop EXaMPIE.......ccoooeuiiiiiiii et 49
12.1. Setting Motor Control Profile Parametersc..uuviiiiiioiiiiiieece e 49

020 0 O I T o A | PP 49

I R O TP RUPPOUPRTPR 49

Cross The Road Electronics Page 3 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

N G T -\ PP U PP PP 49
12.2. Clearing Integral Accumulator (I ACCUM)ccoiiiiiiiiiiii e e e e e anes 50

12.2. 0. LABVIEW ...ttt e e e e e et ettt e e e e e e e e e e tat e e e e e e eannnes 50

12.2.2. CAH/IAVA. ..ttt e e 50

12.2.3. Is Integral Accum cleared any other time?............coovvvviiiiiiiiiiiiiiiieeeeeeee 50
13. Setting SENSOI POSILIONceiiiiiiiiiiiiiiiiiiei ettt 51
IR Tt O = o AV | PP PPPPPPPPPP 51

13.1.1. MOEOr ENADIE......coiiiiiiiiiiiiieeeeeeeeeeeeeeeee et 51
T O PSPPSR PRI 51
S TR TN -\ - LU P PRSPPI 51
I = TH] L - Vo 1T 52
I I = o 1 52
i O TSP PPPTTUPPPTP 52
G T -\ - LU 53
15. CAN bus Utilization/ErTOr METICSevviiiiiiiiiiiiiiiiiieee ettt 54
15.1. HOW Many TalONS CAN WE USE?......ciiiiiiiiiiiieeeeeeeetiiee e e e e e e e e eatta s e e e e e e e eeattta s s aeeeeeeeasernnnnns 55
16. Troubleshooting Tips and CommON QUESTIONS...........ceviiiiiiiiiiiiiiiiiiiiiiieieee et 56

16.1. When | press the B/C CAL button, the brake LED does not change, neutral behavior does
MO CRANGE. .ttt 56

16.2. Changing certain settings in Disabled Loop doesn’t take effect until the robot is enabled.56

16.3. The robot is TeleOperated/Autonomous enabled, but the Talon SRX continues to blink

0range (AISADIEA). e 56
16.4. When | attach/power a particular Talon SRX to CAN bus, The LEDs on every Talon SRX
occasionally blink red. Motor drive seems NOrMal.ccoooiiiiiiiiiiie i 56
16.5. If | have a slave Talon SRX following a master Talon SRX, and the master Talon SRX is
disconnected/unpowered, what will the slave Talon SRX dO?ccooiiiiiiiiiiiiiceciccee e, 57
16.6. Is there any harm in creating a software Talon SRX for a device ID that’s not on the CAN
bus? Will removing a Talon SRX from the CAN bus adversely affect other CAN devices?....... 57
16.7. Driver Station log says Error on line XXX of CANTaION.CPP «evvvvveviiiiiiiiiiiiiiiiiieeieieeieeeeee 57
16.8. Driver Station log says -44087 occurred at NetCOomM...oouuuiiiiiieiiiiiiiie e 58
16.9. Why are there multiple ways to get the same sensor data? GetEncoder() versus

LT ST =T 0 0 T (PSR 58
16.10. So there are two types Of rampP rAE?ovviiiiiiiiiiiiiiiiiiiieeeeeeeeee e 58

16.11. Why are there two feedback “analog” device types: Analog Encoder and Analog
RL01 (=T 11 To] 1 [=] (=T o PRSP P OPSRPPPPP 59

Cross The Road Electronics Page 4 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.12. After changing the mode in C++/Java, motor drive no longer works. Self-Test says “No
DY 2T o = PP PPPPPPPPPP 59

16.13. All CAN devices have red LEDs. Recommended Preliminary checks for CAN bus. 60

16.14. Driver Station reports “MotorSafetyHelper.cpp: A timeout...”, motor drive no longer
works. roboRIO Web-based Configuration says “No Drive” mode? Driver Station reports error -

O PR RRR PP 60
16.15. Motor drive stutters, misbehaves? Intermittent enable/disable?ccccooooeirinnnnn. 61
16.16. What to expect when devices are disconnected in roboRIO’s Web-based Configuration.
= | L=T0 BT = | I 62
16.17. When | programmatically change the “Normally Open” vs “Normally Closed” state of a
limit switch, the Talon SRX blinks orange momentarily.ccccooeiiiiiiiiiiii e, 63
16.18. How do | get the raw ADC value (or voltage) on the Analog Input pin?ccoovvvvinnnnnn. 63
16.19. Recommendation for using relative SENSOIS.vviviiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeee e 63
16.20. Does anything get reset or lost after firmware updates?........cccoeeeeeiiiiiiiiiiiin e, 63
16.21. Analog Position seems to be stuck around ~100 UNItS?vviiiiieeiiiiiiiiiiiee e 63
16.22. Limit switch behavior doesn’t match expected settings........cccccooviiiiiiiiiiii . 64
16.23. How fast can | control just ONE Talon SRX?.......ccouiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 65
16.24. Expected symptoms when there is excessive signal reflection.cccccceeeiiiiiniiiininnnnnn. 65
16.25. LabVIEW application reads incorrect Sensor Position. Sensor Position jumps to zero or
IS MUISSING COUNES. ..euituii e ee e ettt e e e e e et e e e e e e e e e et e e e e eeeeeeeeeta e e eeaaeseesstaa e seeaaeeessstannsaaaaas 65
16.26. CAN devices do not appear in the roboRIO Web-based config.cccoeeeviiieiiriiiiinnnnnn. 66

16.27. After a power boot of the robot, and then enabling, occasionally a single CAN actuator
does not enable (blinks orange as though it is disabled). Issue corrects itself after pressing
“Restart Robot Code” in Driver Station and re-enabling robot.cccccovviiiiii i, 66

16.28. Occasionally when a firmware update is attempted we get an immediate error. Talon
SRX is blinking green/orange. However when we re-imaged the RIO the issue went away? ...67

17. Units and Signal DEefiNItIONSoviviiiiiiiiiiiiiiiiiiiiii ettt 68
17.1. (Quadrature) ENcoder POSItION...........cuuiiiiii i 68
17.2. ANAIOG POLENTIOMETETciiiiiiiiiiiiiiiiiiee ettt 68
17.3. Analog Encoder, “Analog-In POSItION”............ooiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 68
17.4. EncRise (a.K.a. RISING COUNTET)ooiiiiiiiiiiiiiiiiiiiiiiieeee ettt 68
17.5. DUtY-CYClE (TRIOHE)eeveiiiiiiiiiiiiieeiiee ettt 68
17.6. (Voltage) RAMP RALE.coiiiiiiii ettt e e e e e et a e e e e e e e eeeneennes 69
17.7. (Closed-Loop) RAMP RALEooviiiiiiiiiiiiiiiiieiieeeeeee ettt 69
A T 1 (=To = o] L= (4] 1 TR PP 69

Cross The Road Electronics Page 5 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

17.9. Integral ACCUMUIALON (1 ACCUIM) .. oo e e e e et a e e e e e e e eeenennanns 69
17.10. Reverse FEedDACK SENSON.........cccuuiiiiiiiieiiieeiie e 69
17.11. Reverse CloSed-LOOP OULPUL.......oeiiiiiiiiiiiiiieieeeee ettt 69
A B @ 0 1Y = To B o Yo o = o) U 70
0 G T @4 01T T B o o] o I = | - SRR PP PPPPPPPPPPPP 70
18. How is the closed-100p iIMPIEMENTEA?covviiiiiiiiiiiiiiieeeeeeeeeeee e 71
S Y (o] (o @S T= 1114V [[o =] U 73
RS T B 1T o] = (o £ o] = PP PP PPPPPPPPPPPP 73
S O == 11 4] 0] U 74
R R TN 1= Y= W == 1o] o[PP PP PPPPPPPPPP 75
S I | AT Y A e T o] o] = 75
19.5. RODOIDIIVE ..ccoiiiiiiiiiieiieeeeee ettt ettt ettt ettt ettt ettt et ettt e et e et e e e e e e e e eeeeees 76
20. Going deeper - How does the framing WOIrK?ccooeeiiiiiiiiiiiin e e 77
20.1. GENETAI SEALUS ... e 77
20.2. FEEADACK STATUS ... e e e e e e e 77
20.3. QUArature ENCOUET STALUS.......c.cevvuiieeierieiee et ee et e e e et e e e et e e e eat e e e s et e e e e eataeeeerrans 77
20.4. Analog Input / Temperature / Battery Voltage Status..........cccooeeeviviiiiiiiiinie e 78
20.5. Modifying Status Frame RaAESciiii i it e e e e e 78

20,5, . A Lottt 78

20.5.2. JAVA ..eeeieeeeete et e et 79

20.5.3. LADVIEW EXAMPIEeuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 79
20.6. CONIOI FTAMIE ...ttt e e e e ettt e e e e e e e st e et e e e e e e s e bbb e e reaeeeeeaaans 80
20.7. Modifying the Control Frame Rate.........coooo oo 80
21, FUNCLONAI LIMITATIONS ... 81
21.1. Firmware 1.1-1.4: Voltage Compensation Mode is not supported.ccceeevvvvvvnieeeeennnn. 81
21.2. Firmware 1.1-1.4: Current Closed-Loop Mode is not supported.ccoooeveeeiieeeeeeeeeeeeeen. 81
21.3. Firmware 1.1-1.4: EncFalling Feedback device not supported.cccceeieeeeiiiiiiiiiieeeeennn, 81
21.4. Firmware 1.1-1.4: ConfigMaxOutputVoltage () not supported...........ccceevivvninneeenn. 81
21.5. Firmware 1.1-1.4: ConfigFaultTime () notnNeededccoooviiiiiiiiiiiiiiiieecee e, 81
21.6. Firmware 1.1: Changes in Limit Switch “Normally Open” vs “Normally Closed” may require
power cycle during a SPecific CIFCUMSTANCE.ooiiiiiiiii e 81
21.7. LabVIEW: EncRising Feedback mode not selectable. ..., 81
21.8. LabVIEW/C++/Java API: ConfigEncoderCodesPerRev () is not supported. 82

Cross The Road Electronics Page 6 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.9. LabVIEW/C++/Java API: ConfigPotentiometerTurns () IS not supported. 82
21.10. Java: Once a Limit Switch is overridden, they can’t be un-overridden. 82
21.11. LabVIEW: Modifying status frame rate is not available.cccooo i, 82
21.12. LabVIEW: Modifying control frame rate is not available.cccccooeeii i, 82
21.13. Firmware 1.1: After selecting “Analog Encoder”, “Sensor Position” does not reliably

decode when sensor wraps around (3.3V == 0V)..cuuiiiiiii et 82
21.14. LabVIEW: Certain SRX VI's running in parallel can affect the GET PID VI signals. 83
21.15. C++: There is no method to reverse the output of a slave Talon SRX.cccccceeeeeeenen. 84

21.16. Firmware <0.36: Limit Switch Faults and Soft Limit Faults may cause Talon SRX to
disable for approximately two seconds during the “first time”.ccccciiiii 85

21.17. Firmware 1.4: When setting the “Sensor Position” of an analog encoder, multiple set
COMMANAS Are FEOUITEX. ...ceeiiiiii e e e e e e et e s e e e e e e e e et e e e eaaeeeearttaaaeaeaaeas 86

21.18. roboRIO power up: roboRIO startup software may not be ready for Robot Application. As
a result, certain resources (like CAN actuators) may not enable on teleOp-Enabled after a

TODORIO POWET OO ...ttt 87
21.19. roboRIO power up: User should manually refresh the web-based configuration after

rEDOOLING FODORIO. ...ttt 88
22. CRF Firmware RevViSion INfOrmMation..........coooeiiioiieeeeeeeee e 89
23. Document ReVision INFOMMALIONccooiiiioeeeee s 90

Cross The Road Electronics Page 7 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

1. CAN bhus Device Basics

Talon SRX, when used with CAN bus, has similar functional requirements with other FRC
supported CAN devices. Specifically every Talon SRX requires a unique device ID for typical
FRC use (settings, control and status). The device ID is usually expressed as a number
between ‘0’ and ‘62’, allowing use for up to 63 Talon SRXs at once. This range does not
intercept with device IDs of other CAN device types. For example, there is no harm in having a
Pneumatics Control Module (PCM) and a Talon SRX both with device ID ‘0’. However having
two Talon SRXs with device ID ‘0’ will be problematic.

Talon SRXs are field upgradable, and the firmware shipped with your Talon SRX will predate
the “latest and greatest” tested firmware intended for FRC use. Firmware update can be done
easily using the FRC 2015 roboRIO Web-based Configuration.

Talon SRX provides two pairs of twisted CANH (yellow) and CANL (green) allowing for daisy
chaining. Unlike previous seasons, the CAN termination resistors are built into the FRC robot
controller (roboRIO) and in the Power Distribution Panel (PDP) assuming the PDP’s termination
jumper is in the ON position.

More information on wiring and hardware requirements can be found in the Talon SRX User’s
Guide.

Cross The Road Electronics Page 8 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2. roboRIO Web-based Configuration: Firmware and

diagnostics

A new diagnostic feature in the 2015 FRC Season is the roboRIO’s Web-based Configuration
and Monitoring page. This provides diagnostic information on all discovered CAN devices,
including Talon SRXs. Talon SRXs can also be field-upgraded using this interface. This feature
is accessible by entering the mDNS name of your robot in a web browser, typically “roborio-

XXXX.local” where XXXX is the team number (no leading zeros for three digit team numbers).
« (¢l ' roborio-217.local/#Home

roboRIO-217 : System Configuration

2
&N
o)
2
I
=
k)
]
=

[sesrch | Refresh Self-Test
-
g robeRIO —
roboRIO-217 Settings
Nama | Talan SRX (Davice 1D 14)
" CAN Interface
cand Device 1D 14
PCM || Light Devica LED
PCM (Device ID O) Software Status Running Application.

"

Hardware Revision 4

POP

PDP {Device ID 0) Manufacture Date MNov 2, 2014
Bootloader Revision 2.6
Talon SRX
Talon SRX (Device 1D 14) wendar Cross The Road Electronics
Madel Talon SRX
Talon SRX) Firmware Revision 11
Talon SRX (Device 1D 10)
Status Present
Talon SRX - .
Talon SRX (Device 1D 13) Update Firmware
Talon SRX
Talen SR (Device ID &)
Motor Controller Startup Settings
Talon SRX
Talon SRX (Devics 10.8) Brake tods
Forward Limit-Switch Normally Opened -
Talon SRX Revarse Limit-Switch Normally Opaned ~
Talen SR (Device ID 12) ree HmitE e
Talon SRX
Talon SR (Device ID 16) Soft Limits
Talon SRX || Forward Soft Limit Enable
Talon SRX (Device ID 17) p
Forward Soft Limit o
Talon SRX || Revarse Soft Limit Enable
Talon SRX (Device ID 15) 3 f
Reverse Soft Limit

E

e

2.1. Device ID ranges
A Talon SRX can have a device ID from 0 to 62. 63 is reserved for broadcast.
If you select an invalid ID you will get an immediate prompt.

Save Revert Self-Test

& There was a problem saving the settings for this device.
Device ID must be in the range 0 - 62

Sattings

Hame Talon SRX (Device ID 3) |

Device 1D | \63 I]

|_| Light Device LED
Software Status Running Application.

Cross The Road Electronics Page 9 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2.2. Common ID Talons
During initial setup (and when making changes to your robot), there may be occasions where
the CAN bus contains multiple running Talon SRXs with the same device ID. “Common ID”
Talon SRXs are to be avoided since they prevent reliable communication and prevents your
robot application from being able to distinguish one Talon SRX from another. However the
roboRIO’s Web-based Configuration and Talon SRX firmware is designed to be tolerant of this
problem condition to a degree.

In the event there are “common ID” Talons, they will reveal themselves as a single tree element
(see image below). In this example, there is only one “Talon SRX (Device ID 0)” graphical
element on the left, however the software status shows that there are three detected Talon
SRXs with that device ID. If the number of “common ID” Talon SRXs is small (typically five or
less) you will still be able to firmware update, modify settings, and change the device ID. This
makes solving device ID contentions possible without having to isolate/disconnect “common ID”
Talon SRXs.

roboRIO-217 : System Configuration

ﬁ | Search | Refresh Self-Test
-
- g roboRIO —
Ldk roboRIO-217 Settings
— Name | Talon SRX {Device 1D 0)
06 . CAN Interface
cand Device ID 0
; PCM |_| Light Devica LED
PCM (Device ID Q) Software Status I There are 3 devices with this Device ID. Running Application. I
— . Hardware Revision 1.3
lﬂ PDP {Davice 1D 0) Manufacture Date Sept 10, 2014
G Bootloader Revision 2.2
Talon SRX
Talon SRX (Device ID 10} wendor Cross The Road Electronics
— Model Talon SRX
‘Q| Talon SRX B Firmwrare Revision 1.1
Talon SRX (Device ID 13)
J— Status Presant
gl | Talen SRX I Il
Talon SRX (Device ID 16) Update Firmvare
| Talon SRX
Talon SRX (Device ID 6}
Motor Controller Startup Settings
Talon SRX
Talon SRX (Device ID 12) Braks Mode Brake hd
Forvard Limit-Switch [Mormally Opened -]
Tolon o Revarsa Limit-Switch
Talon SRX (Device ID 14) ree HmiEEw ormaly Ope:
Talon SRX
Talon SRX (Device ID 17) Soft Limits
Talon SRX || Forward Soft Limit Enable
Talon SRX (Device ID 15) b
Forward Soft Limit o
Talen SRX || Reverse Soft Limit Enable
Talon SRX (Device ID 13) o r
Reverse Soft Limit o
Talon SRX
Talon SRX (Device ID 11)
Motor Controller Closed-Loop Control Parameters Slot 0
Talen SRX
Talon SRX (Devica 1D 8) P Gain 0
1 1 Gai 0
Talon SRX " e
Talon SRX (Device ID 0) D Gain o
Feed-Forward Gain 0

il NI roboRIO

Cross The Road Electronics Page 10 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

When “common ID” Talon SRXs are present, correct this condition by changing the device ID to
a “free” number, (one not already in use) before doing anything else. Then manually refresh the
browser. This allows the web page to re-populate the left tree view with a hew device ID.

Since the web page allows control of one Talon SRX at a time, you may need to determine
which “common ID” Talon SRX you are modifying. Checking the “Light Device LED” and
pressing “Save” can be used to identify which physical Talon SRX is selected, and therefore
which one will be modified. This will cause the selected Talon SRX to blink its LEDs uniquely
(fast orange blink) for easy identification. In the unlikely event the device is in boot-loader
(orange/green LED), it will still respond to this by increasing the blink rate of the orange/green
pattern. The “Light Device LED” will uncheck itself after pressing “Save”.

Save Revert Self-Test
Settings
MName Talon SRX (Device ID 3)

Device ID 3

+'| Light Device LED
CSoftware Status Rurnning Application.

Hardwara Revision 1.4

Tip : Since the default device ID of an “out of the box” Talon SRX is device ID ‘0’, when you
setup your robot for the first time, start assigning device IDs at '1’. That way you can, at any
time, add another default Talon to your bus and easily identify it.

Cross The Road Electronics Page 11 2/26/2015

217-8080

TALON SRX Software Reference Manual

2/26/2015

2.3. Firmware Field-upgrade a Talon SRX
Talon SRX uses a file format call CRF. To firmware flash a Talon SRX, navigate to the
following page and select it in the left tree view.

To get the latest firmware files see Section 2.3.4. Where to get CRF files?

roboRIO-217: NI Web-b

&8l ‘| roborio-217.local/#Home

boRIO-217 : System Configuration

Talon SRX

Talon SRX (Device ID 2}
Talon SRX

Talon SRX (Device ID 15)
Talon SRX

Talon SRX (Device ID 11)
Talon SRX

Talon SRX (Device ID 17)

ol
2
&)
2
el
=
e
@

| Search | Refresh
. CAN Interface i
can0 Settings
PCM N
PCM (Davice ID 0) [T am=
Device ID

Software Status
Hardware Revision
Manufacture Date
Bootloader Revision
endor

Model

Firmwrare Revision

Status

Press “Update Firmware”.

Settings

Name

Device ID

Saoftware Status
Hardwars Revision
Manufacture Date
Bootloader Ravision
Wendor

Model

Firmware Revision

Status

Cross The Road Electronics

|Talon SRX (Device ID 3) |
=

_| Light Device LED

Running Application.

1.4

Mow 3, 2014

2.6

Cross The Road Electronics
Talon SRX

1.1

Prasant

Update Firmware

Page 12

Self-Test

Talon SRX (Device ID 3) |
2 |

| Light Devica LED

Running Application.

1.4

Mow 3, 2014

2.6

Cross The Road Electronics
Talon SRX

1.1

Present

2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

Select the firmware file (*.crf) to flash.

®© = 4 L » ThisPC » OS(C) » temp » v ¢ | | Searchtemp o
Organize - New folder = M @
A Mame Date modified Type *
& This PC
nTI[F = . B TalonSnc-Application-1.1.crf 12/7/20141205AM _ CRF File
ct -
W ::rorjmr ' (|| TALONSRXSoftwareReferenceManual 1271472014 8:56 PM File folder
strator (ct
® Mmf"f " °r(B Log Files 12/14/20143:05PM File folder
strator (ct
ministrator) New folder (35) 12/13/2014 1111 .. File folder
[ctrl (etr-1) - _ v
o acrlf 13/RFINTA 1.AR DRA Fila frldar
® davidg (ctr-1) v < >
File name: |Talor‘lSn(—Applicatior‘l—'l.'I.cn‘ w | | Firmware Image Files (*.crf) W |
| Open | | Cancel |

You will be prompted again, press “Begin Update”.

Update Firmmware

The current firmware version is 1.1.

Selected firmware file

TalonSrx-Application-1.1.crf H Browse I

Begin Update Cancel

A progress bar will appear and finish with the following prompt. Total time to field-upgrade a

Talon SRX is approximately ten seconds. The progress bar will fill quickly, then pause briefly at
the near end, this is expected.

9‘ The firmmware update completed successfully.

Settings
MHama | Talon SRX {Device ID 3) |
Mimaricma T [> I

Cross The Road Electronics Page 13 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2.3.1. When | update firmware, | get “You do not have permissions...”
If you get the following error...

Refresh Self-Test

B You do not have permission to modify the firmwara, Log in with an account that has permission to perform a firmware update.

Settings
Name | Talon SRX (Device ID 3) |
Device ID 3

U | 1inkt Deviea | O

...then you have to log into the web interface using the username “admin”.

Restart Login

i
Save ‘ Refresh H Self-Test | [o

3 You do not have permission to medify the ware. Log in with an account that has [
permission to perform a firmware updatg

Settings
Name PCM (3rd device found)

The user name is “admin” and the password is blank “”. Don’t enter any keys for password.

Additionally you can modify permissions to allow field upgrade without being asked for login
every single time. If security isn’t a concern then modify the permissions so that “anyone” can
access “FirmwareUpdate” features.

Click on the key/lock icon in the left icon list.

NI-roboRIO-030498A1 : Security Configuratic

User Name
Comments
@ I Password La!

~

Users Groups Permissions

This user bel

administrator
everyone

i
@ This uger has

Cross The Road Electronics Page 14 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

Then click on the “Permissions” tab. Select “FirmwareUpdate”, then press “Add” button.
I-roboRIO-030498A1 : Security Configuration

Users Groups Permissions

FirmwarelUpdate
FSRead Permission Name | FirmwareUpdate |

FSWrite
GetDB
GetSystemConfiguration These users have this permission:
GetWsAPIKey admin

ManageExtensions
ManageWs
MiWWebCer

Reboot | Add | [ﬁ]
RemoteShell

SelDB

SetRTLockPassword administrators
ZeiSystemConfiguration
SetWSAPIKey
S5LAdminModifyCerts
S5LAdminReadCerts
ViewConsoleCuiput
WIFConfigureAppServer

Comments | |

These groups have this permission:

e8| (& [V B[] [2]

‘ |Elm

Add Remaove

Select everyone, then OK.

everyone

POWEINUSErs

USErSs

| e

Click “Save” to save changes.

/1, You have unsaved changes. [Save H Revert]

Cross The Road Electronics Page 15 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2.3.2. What if Firmware Field-upgrade is interrupted?
Since ten seconds is plenty of time for power or CAN bus to be disconnected, it is always
possible for a field-update to be interrupted. An error code will be reported if the firmware field-
update is interrupted or fails. Additionally the Software Status will report “Bootloader” and
Firmware Revision will be 255.255 (blank).

If a Talon SRX has no firmware, its boot-loader will take over and blink green/yellow on the
device’s corresponding LED. It will also keep its device ID, so the roboRIO can still be used to
change the device ID or (re)flash a new application firmware (crf). This means you can
reattempt field-upgrade using the same web interface. There is no need for any sort of recovery
steps, nor is it necessary to isolate no-firmware Talon SRXs.

Example capture of disconnecting the CAN bus in the middle of a firmware-upgrade...

| Search | Refresh Self-Test
roboRIO | = There was a problem updating the firmware for this device.
roboRIO-217 Talon SRX (Device ID 3} : CTRE_DI_CouldMotSendFlash
CAN Interface
Fi Settings
cand
PCM Name I:T-EI'I:I-I'I SRX (Device ID 3) |
PCM (Device ID 0) Device 1D 3 |
PDP |_| Light Devica LED
PDP (Device ID 0) Software Status I Bootloader, LED is blinking green/cranga. I
Hardwara Revision 1.4
Talon SRX
Talon SRX [Device ID 2} Manufacture Date Mov 2, 2014
Bootleader Revision 2.6
Talon SRX .
’ Talon SRX (Device 1D 15) Vendor Cross Tha Road Electronics
Model Talon SRX
Talon SRX Firmware Revision I 255.255 (Mo firmware) I
Talon SRX (Device ID 11)
Status Present
A Toion srx

Cross The Road Electronics Page 16 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2.3.3. Other Field-upgrade Failure Modes
Here’s an example error when trying to flash the wrong CRF into the wrong product.
The device will harmlessly stay in boot-loader, ready to be (re)flashed again.

Refresh Self-Test

G There was a problem updating the firmware for this devica.
Talon SRX (Device ID 3} : Selected CRF is for the wrong product

Settings
Mama l.Talun SRX (Device ID 3)
Drevice ID |2 J

|| Light Device LED

Here’s what to expect if your CRF file is corrupted (different errors depending on where the file
is corrupted). The device will harmlessly stay in boot-loader, ready to be (re)flashed again. Re-
downloading the CRF firmware file is recommended if this is occurring persistently.

G There was a problem updating the firmware for this device.
Talon SRX (Davice ID 3) : Invalid CRF File : File Size is invalid

G Thera was a problem updating the firmware for this devica.
Talon SRX (Device ID 3) : CTRE_DI_CouldMNotValidate

e There was a problem updating the firmware for this devica.
Talon SRX {Device ID 3) : Invalid CRF File : Bad Header

Here’s what to expect if you flash the wrong product’'s CRF. For example if you try to flash the
CREF for the Power Distribution Panel (PDP) into a Talon SRX, you will get an error prompt.

a There was a problem updating the firmmware for this device.
Talon SRX [(Device ID 12) : Selacted CRF is for the wrong product

Cross The Road Electronics Page 17 2/26/2015

217-8080

TALON SRX Software Reference Manual

2/26/2015

2.3.4. Where to get CRF files?
The FRC Software installer will create a directory with various firmware files/tools for many
control system components. Typically the directory path is “C:\Users\Public\Documents\FRC”.

Home Share View
[D & cut L-& x New item ~ D E
' [#=] Copy path & : < Easy access ~ |:
Copy Paste E' P I\.:S\:e Ct(;pvy Delvete Rename Propverties G
Clipboard Jrganize Mew Ope

(3) ~ 1 L » ThisPC » OS(C) » Users » Public » PublicDocuments » FRC »

-

~ Name Date modified Type

& OneDrive

@ b e B2 TalonSre-Application-1.01.crf 12/16/2014 %:30PM CRF File

ocument

B ri [RobotUsageData.bet 12/5/20143:10PM TXT File
ictures

HX ppp- Application-1.37.crf 12/16/20148:30PM CRF File

B2 pCM-Application-1.62.crf 12/16/20148:30PM CRF File

& Homegroup [tmmeme 100 i AmME AN AR IR RIR

When the path is entered into a browser, the browser may fix-up the path into
“C:\Users\Public\Public Documents\FRC”.

In this directory are the initial release firmware CRF files for all CTRE CAN bus devices,
including the Talon SRX.

Additionally newer updates may be provided online at www.crosstheroadelectronics.com and
WwWw.vex.com.

The latest firmware to be used at time of writing is version 1.1 (or newer).

Cross The Road Electronics Page 18 2/26/2015

http://www.crosstheroadelectronics.com/
http://www.vex.com/

217-8080

TALON SRX Software Reference Manual

2/26/2015

2.4. Self-Test

Pressing Self-Test will display data captured from CAN bus at the time of press. This can
include fault states, sensor inputs, output states, measured battery voltage, etc...

At the bottom of the Self-Test results, the build time of the library that implements web-based

CAN features is also present.

Here’s an example of pressing “Self-Test” with Talon SRX. Be sure to check if Talon SRX is
ENABLED or DISABLED. If Talon SRX is DISABLED then either the robot is disabled or the

robot application has not yet created a Talon SRX object (see Section 3. Creating a Talon SRX
Obiject (and basic drive)).

‘ Search

A

g roboRIO
roboRIO-217

CAN Interface

=9 can0

PCM

PCHM (Device ID 0)

PDP

PDP [Davice ID O]

Talon SRX

Talon SRX (Device 1D 3}
Talon SRX

Talen SRX (Device ID 15)
Talon SRX

Talon SRX (Device 1D 11)
Talon SRX

Talon SRX (Devics 1D 17)
Talon SRX

Talon SRX (Devics 1D 1)
Talon SRX

Talon SRX [Device ID 8)
Talon SRX

Talon SRX (Devics 1D 13)
Talon SRX

Talon SRX (Device 1D 15)
Talon SRX
Talon SRX [Device ID 18)
Talon SRX
Talen SRX (Device ID 18)
Talon SRX
Talen SRX (Device ID 14)

Cross The Road Electronics

Refrash

Self-Test

G The s=lf test completed successfully.

TALON IS MOT EMABLED! If robot is enabled maybe the 1D is wrong?
Mode : 0 : Throttle (duty cycle)

Applied Throttle : 0
Brake during neutral

CloseloopError : O
ProfileSlotSelect : O

Selected Device for Close Loop @ O : Quad Encoder

Pos: O
Velocity: O

Quad Encoder
Pos: O

Velocity : O
APin: 1

B Pin: 1

Idx Pin @ 1

Idx rise edges : 0

Analog Input

ADC : 36

Pos (with overflows) : 96
Velacity : O

Frwrd Limit Switch is Open
Rew Limit Switch is Cpen

(Fault) {Now}

Fwed Limit Switch :

Rew Limit Switch :
Fwd Soft Limit :
Rev Soft Limit :
Under Vbat :
Qver Temp

o020 @

Current (&) : 0.00
Battery (V): 11.94
Temp(C} : 20.31

(Sticky)

ar oo

Double click "Salf-Test" to clear sticky faults.

Plugin Build:Dec & 2014 23:21:10
Press "Refresh” to close this windaow.

Page 19

2/26/2015

217-8080

TALON SRX Software Reference Manual

2/26/2015

After enabling the robot and repressing “Self-Test” we see the Talon SRX is enabled.
Additionally we see there is a sticky fault asserted for low battery voltage.
Sticky faults persist across power cycles for identifying intermittent problems after they occur.

J

I.S‘Earc-‘r
g roboRIO
roboRIO-217
Gl CAN Interface
canl
PCM

Talen SRX

Talon SRX (Device ID 14)
Talon SRX

Talon SRX (Device ID 12)
Talon SRX

Talon SRX (Device ID 18)
Talen SRX

Talon SRX (Device ID 18)
Talen SRX

Talon SRX (Device ID 2}
Talen SRX

Talon SRX (Device ID 0}
Talen SRX

Talen SRX (Device ID 10)
Talen SRX

Talon SRX (Device ID &)
Talon SRX

Talon SRX (Device ID 11)
Talon SRX

Talon SRX (Device ID 17)
Talon SRX

Talon SRX (Device ID 2}

Cross The Road Electronics

Page 20

Refresh Self-Test

Q The salf test completed succassfully.

TALOHM is enabled.

Mode : 5 = Slave Follower
Applied Throttle : O
Brake during neutral

CloseloopError : 0
ProfileSlotSelect : O

Selected Device for Close Loop : 0 : Quad Encoder
Pos: O
Velocity: O

Quad Encoder
Pos: O

Velocity : O
APin:1
BPin:1

Idx Pin : 1

Idx rise edges : 0

Analog Input

ADC : 57

Pas (with overflows) : 97
Velocity : 0

Fwd Limit Switch is Open
Raw Limit Switch is Open

(Fault) (Mow)} [Sticky)
Fuwid Limit Switch : o o
Rew Limit Switch @ o o
Fred Soft Limit ¢ u} u
Rewv Soft Limit : o a
Under Wbat : v] E
Cver Temp @ i} 1}

Current [A) : 0.00
Battery (V): 11.89
Temp(C) : 21.61

I Double click "Salf-Test" to clear sticky faults. I

Plugin Build:Dec & 2014 23:21:10
Press "Refresh” to close this window.

2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2.4.1. Clearing Sticky Faults
After double clicking Self-Test in a rapid fashion we see our fault gets cleared.

Refresh Self-Test

0‘ The salf test completed successfully.
TALON IS NOT ENABLED! If robot is enabled maybe the ID is wrong?
Mode : 5 : Slave Follower
Applied Throttle : 0
Brake during nautral

CloseloopError : O
ProfileSlotSelect : O

Salected Deavice for Close Loop @ 0 : Quad Encoder
Pos: O
Velocity: O

Quad Encoder
Pos: O

Velocity : O
APin:1

B Pin: 1

Idx Pin : 1

Idx rise edges : 0

Analog Input

ADC : 57

Pos {with overflows) : 97
Velocity : O

Fwd Limit Switch is Open
Rewv Limit Switch is Open

[Fault) (Mow)} [Sticky)
Fuwed Limit Switch : o o
Rewv Limit Switch = o o
Fwed Soft Limit : [u] i}
Rev Soft Limit : 8] o]
Under Vhat : o m
Over Temp @ a i}
Current (A) : 0.00
Battery (W): 11.89
Temp(C} : 20.96

Double click "Salf-Test" to clear sticky faults.

Plugin Build:Dec & 2014 23:21:10
Press "Refrash" to close this window.

Cross The Road Electronics Page 21 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2.5. Custom Names
Another feature made available by the Web-based Configuration is the ability to rename Talon
SRXs with custom string descriptions. A Talon SRX’s custom name is saved persistently inside
the Talon. To modify the default name highlight the contents of the “Name” text entry.

Refrash Self-Test
Settings
Mame alon SRX {Device ID 7)
Device ID

]

| Liaht Device LED

...then replace with a custom text description and press “Save”.

roboRIO-217 : System Configuration

160 & [V [=][&] B

‘ Talon SRX

e

Talon SRX
Talon SRX (Device ID 7}

Status

| Search J Save Revert Self-Test
-
g roboRIO —
roboRIO-217 Settings
N ‘Top Side Shooter Wheel
P CAN Interface lame | Top Side Shoo == |I
can0 Device ID 7

PCM | Light Devica LED

PCM (Device 1D 0) Software Status Running Application.

POP Hardware Revision 1.3

PDR (Device 1D 0) Manufacture Date Sept 10, 2014
Bootloader Revision 2.3

endor Cross The Road Electronics
Model Talon SRX

Talon SRX Firmware Revision 1.4

Talon SRX [Device ID 15)

Presant

The new description will appear in the left tree view.

roborIO- - aystem Lonnguration

Talon SRX
Top Side Shooter Wheel

o/ (6 (&) (v][]+ B

‘ Talon SRX

Cross The Road Electronics

Page 22

Wendor
Maodel

Firrmisara Basrizian

|5‘earr-‘r J Refrash Salf-Test
-
g roboRIO —
roboR1O-217 Settings
Mame ' Top Side Shoater Whesl
N CAN Interface | Tep
cand Device ID

|

PCM [_] Light Device LED

PCM (Device 1D 0) Software Status Running Application.

POP Hardwara Revision 1.3

PP {Device ID O) Manufacture Date Sept 10, 2014
Bootloader Revision 2.3

Craoss The Road Electronics
Talon SRX

14

2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

2.5.1. Re-default custom name
To re-default the custom name, clear the “Name” text entry and press “Save”.

Save Revert Self-Test
Settings
Name l
Device ID 7
|_| Light Device LED
Software Status Running Application.

Left tree view will update with a temporary name until the “Refresh” button is pressed.

Talon SRX
frccan3

After pressing “Refresh” the default name will appear.

I.S‘E.arch J Save Refrash Self-Test
-
g roboRIO —
roboRIO-217 Settings
. @ CAN Interface Name | Talon SRX (Device ID 7) |
o P —
cand Device 1D 7
PCM | Light Devica LED
PCM (Device ID 0} Software Status Running Application.
Hardware Revision 1.3
FCP
PODP {Davice 1D 0] Manufacture Date Sept 10, 2014
Bootloader Revision 2.2
Talon SRX
Talon SR (Device 1D 7) endor Cross The Road Electronics
. Model Talon SRX

Cross The Road Electronics Page 23 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

3. Creating a Talon Object (and basic drive)

3.1. Programming APl and Device ID
Regardless of what language you use on the FRC control system (LabVIEW/C++/Java), the
method for specifying which Talon SRX you are programmatically controlling is the device ID.
Although the roboRIO Web-based Configuration is tolerant of “common ID” Talon SRXs to a
point, the robot programming API will not enable/control “common ID” Talons reliably. For the
robot to function properly, there CANNOT BE “COMMON ID” Talon SRXs. See Section 2.2.
Common ID Talons for more information.

3.2. New Classes/Virtual Instruments
C++/Java now contains a new class CANTalon (.h/.cpp/.java).

LabVIEW contains three new motor types for the FRC 2015 season: Talon SRX, Victor SP,
CAN Talon SRX. When using Talon SRX on CAN bus, select the CAN Talon SRX. The other

two modes are for PWM use. Additionally new VIs are available in the CAN Talon SRX palette.
» PID

* WPI Robotics Library
L Actuataors
L MotorControl

Mator | [Motor | | Mator | | Botor

Open —:-lEI @—:v Cloze
Motaor | | Flator | | Matar m}

Gt - TALOH
Dutput Enable | |Disable s
Matar | [Mator | =REHE

zet | [zarere|| AN Talon SRX

Output | [COHFIG

After selecting CAN Talon SRX, the new Vls are visible...
CAN Talon SRX 3]
| 4 | @, search | & Customize~

GET | [cHA&HGE| | RESET
zTATUS Ml:ll:lE| HTanL
CONFIG c-:-nrus| CONFIG | | CONFIG
EHeELEN | LIMT | [SoFT. | |ERaKE
Lirits | [switen| [dkits | | SoRsT

TALOHN

Cross The Road Electronics Page 24 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

3.3. LabVIEW
Creating a “bare-bones” Talon SRX object is similar to previously supported motor controllers.
Start by creating a wpI_ MotorControlOpen.vi object (left) and a
WPI MotorControlRefNum.vi object (right).

Motar Motar

[5ame DeviceinWebCanfiglE—T?g?.E -[5]
CAN Talon SRX ~

These are accessible in the actuator palette (same VIs as previous seasons). Just like with
other motor controllers, the wpI MotorControlOpen.vi has a dropdown to select the motor
controller type.

Custom Motor Descriptianl

To begin with basic control, select “CAN Talon SRX”. The text underneath “Motor” will then
change to ““OPEN CAN TALON”. Then create two constants for the “Device Number” and
“Control Mode” inputs. The control mode will default to “Percent VBus” and “0” for the Device
ID. Enter the appropriate Device ID that was selected in the roboRIO Web-based Configuration.

Also similarly to other motor controllers, you may register a custom string reference using
WPI MotorControlRefNum.vi to reference the motor controller by description in other block
diagrams. In this example we use “Custom Motor Description”.

Setting the output value of the Talon SRX is done similarly to other motor controllers.

In this example we directly control the motor output with a Joystick axis.

When using a closed-loop mode, the set output VI is also the method for specifying the set-
point.

|Read Joystick X and ¥ values and update mntorvalue5|

Joystick 0 e Flotor
— @.) ek
dags tick ™ oy tich] I Custom Metor Description Output
GET @
@_} YALUES wt O
wt O
Joystick 0/ Axes - -]
_
Dbl
Joystick 0/Buttons B
=
Eiaal
Publish the joystick data the
robot sees to the dashboard -t O
wi O

Cross The Road Electronics Page 25 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

3.4. C++
When using a script language, the API class to support Talon SRX is called CANTalon
(.cpp/.h/.java). When the object is constructed, the device ID is the first parameter. There may
be an optional second parameter to change the frequency at which the Talon SRX is updated
over CAN (default 210ms).

1 #include "WPILib.h"

2

3= glass Robot: public IterativeRobot

4 {

5 Joy=stick joy;

[CiNTalon custonmMotorDescrip;

7

2 puoblic:

o= Robot() : jov(0), /* gamepad at the first slot */
10 customMotorDescrip(0) /* device ID '"0', match the RIC Web Config Page *f
11 {

12 }

13

149 void TeleopPeriodic()

15 {

16 donble leftlixis = joy.GetY¥(Joystick::kLeftHand):
17

18 customMotorDescrip. Set (leftixis);

19 }

20

21 ¥

22

23 S5TART ROBOT_CLASS (Robot)

24

3.5. Java
When a CANTalon object is constructed in Java, the device ID is the first parameter. There
may be an optional second parameter to change the frequency at which the Talon SRX is
updated over CAN (default 10ms).

1 package org.usfirst.frc.team2l7.robot;

2= import edu.wpi.first.wpilibj.CANTalon:

3 import edu.wpi.first.wpilibj.IterativeRobot:

4 import edu.wpi.first.wpilibj.Joystick:

5 dmport org.usfirst.frc.team2l17.robot.subsystems.ExampleSubsystem;

&

TS

8 # The VM is configured to automatically run this class, and to call the

9 # functions corresponding to each mode, as described in the IterativeRobot

10 # documentation. If vou change the name of this class or the package after

11 # creating this project, you must also update the manifest file in the resource
1z # directory.

13 */

14 public class Robot extends IterativeRobot {

is

16 public static final ExampleSubsystem exampleSubsystem = new ExampleSubsystem():
iT

i8 Joystick joy = new Joystick(0): /* gamepad at the first slot */
1a CBNTalon customMotorDescrip = new CBNTalon(0); J/* device ID '0', match the RIC Web Config Page */
20

21

228 Tk

23 # This function iz called periodically during operator control

24 =/

258 public void teleopPericdic() {

26

27 dounble axis = joy.get¥():

28

29 customMotorDescrip. set (axis) ;

30 }

31 }

Cross The Road Electronics Page 26 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

3.6 Changing Mode
After a Talon software object is created, the Talon SRX mode can be changed from the default
Percent Vbus (open loop throttle) to the other supported modes programmatically. Additionally
the LabVIEW opEN caNn TALON VI also allows caller to select the initial control mode.

3.6.1. LabVIEW
The cHANGE MODE VI can be used to change the Talon SRX mode, and set the first target set
point, throttle, or Talon Master ID to follow.

Percent VBus
Pasition
Slave

J Unchanged / Invalid

Initial Target-5et Point IF closed-looping
Initial Throttle IF PercentVoltage

[Master Talon to follow IF in Slave-Follower] 0]

3.6.2. C++
The function setControlMode () can be used to change the Talon SRX mode. Caller should
ensure set () is called immediately after to properly set the initial target set point, throttle, or
Master 1D to follow.

/* Possible modes to choose from. Call Set() immediately after changing mode to set the target-set-point/throttle/ or Master Talon ID */
customMotorDescrip. SetControlMode (CANSpeedController: :kPercentVbus); /* direct throttle control, Set() controls drive */

customMotorDescrip.SetControlMode (CANSpeedController: :kFollower); /* follow another Talon, Set() determines Talon to follow. */

customMotorDescrip.SetControlMode (CANSpeedController: :kSpeed); /* Speed Closed-Loop, Set() controls set point */

customMotorDescrip. SetControlMode (CANSpeedController: :kPosition); /* Position Closed-Loop, Set() controls set point */
3.6.3. Java

The function changeControlMode () can be used to change the Talon SRX mode. Caller
should ensure set () is called immediately after to properly set the initial target set point,
throttle, or Master ID to follow.

/* Possible modes to choose from. Call set() immediately after changing mode to set the target-set-point/throttle/ or Master Talon ID */
customMotorDescrip. changeControlMode(ControlMode. PercentVbus); /% direct throttle control, set() controls drive */

customMotorDescrip. changeControlMode (ControlMode. Fol Lower) ; /* follow another Talon, set() determines Talon to follow. */
customMotorDescrip. changeControlMode (ControlMode. Speed) ; /* Speed Closed-Loop, set() controls set point */
customMotorDescrip. changeControlMode (ControlMode. Position); /* Position Closed-Loop, set() controls set point */

Cross The Road Electronics Page 27 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

3.6.4. Check Control Mode with Self-Test

The Self-Test can be used to confirm the desired mode of the Talon SRX (Throttle, Slave,

Position Closed-Loop, and Velocity Closed-Loop). However note that the Talon SRX mode will
not update until robot is enabled.

Example Self-Test

Save J Refresh Self-Test

Q The self test completed successfully.
TALON is enabled.
I Mode : S:SIaveFollowerI
Applied Throttle : 0
Brake during neutral

Refresh Self-Test

) The self test completed successfully.
TALON IS NOT ENABLED! If robot is enabled maybe t/
Mode : 0 : Throttle (duty cycle)
Applied Throttie : 0
Brake during neutral

Cross The Road Electronics Page 28 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

4. Limit Switch and Neutral Brake Mode

4.1. Default Settings

An “out of the box” Talon will default with the limit switch setting of “Normally Open” for both
forward and reverse. This means that motor drive is allowed when a limit switch input is not
closed (i.e. not connected to ground). When a limit switch input is closed (is connected to
ground) the Talon SRX will disable motor drive and individually blink both LEDs red in the
direction of the fault (red blink pattern will move towards the M+/white wire for positive limit fault,
and towards M-/green wire for negative limit fault).

An “out of the box” Talon SRX will typically have a default brake setting of “Brake during
neutral”. The B/C CALL button will be illuminated red (brake enabled).

Since an “out of the box” Talon will likely not be connected to limit switches (at least not initially)
and because limit switch inputs are internally pulled high (i.e. the switch is open), the limit switch
feature is default to “normally open”. This ensures an “out of the box” Talon will drive even if no
limit switches are connected.

For more information on Limit Switch wiring/setup, see the Talon SRX User’s Guide.

Forward Limit Limit Limit Motor Drive Motor Drive *Voltage *Voltage
Limit Switch Switch Switch Switch Switch open Switch closed (Switch (Switch
Mode NO pin NCpin COM pin Fwd. throttle Fwd. throttle = Open) Closed)
Normally
Open pin4 pin10 Y N ~2.5V oV
Normally
Closed pin4 pin10 N Y oV ~2.5V
Disabled Y Y
Reverse Limit Limit Limit Motor Drive Motor Drive *Voltage *Voltage
Limit Switch Switch Switch Switch Switch open Switch closed (Switch (Switch
Mode NO pin NCpin COM pin Rev. throttle Rev. throttle Open) Closed)
Normally
Open pin8 pin10 Y N ~2.5V oV
Normally
Closed pin8 pin10 N Y oV ~2.5V
Disabled Y
*Measured voltage at the Talon SRX Limit Switch Input pin.
Limit Switch Input Forward Input - pin4 on Talon SRX
Limit Switch Input Reverse Input - pin8 on Talon SRX
Limit Switch Ground - pin10 on Talon SRX
Cross The Road Electronics Page 29 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

4.2. roboRIO Web-based Configuration: Limit Switch and Brake
Limit switch features can be disabled or changed to “Normally Closed” in the roboRIO Web-
based Configuration. Similarly the brake mode can be change through the same interface.

roboRIO-217 : System Configuration

NATIONAL

g | search l Refresh Self-Test el
- A
| _‘e\ PDP Settings
PDP (Device ID 0)
? Name | Talon SRX (Device 1D 0) |
Talon SRX | R
Talen SRX (Device 1D 16) St |°—|
Q) || Light Device LED
Talon SRX : —
Talon SRX (Device 1D 12) Softwiare Status Running Application.
— Hardware Revision 1.4
lﬂ Talon SRX Manufacture Date Mov 3, 2014
Talon SRX (Device ID 0)
——y ~ Bootleader Revisien 2.6
@ Talon SRX Vendor Cross The Road Electronics
)) Talen SRX (Device ID 6) Model Talon SRX
‘@ Talon SRX Firmware Revision 1.1
) Talon SRX (Device ID 10) Status Presant
9 Talon SRX — |. Update Firmware
— Talen SRX (Device ID 14) I
Talon SRX
Talon SRX (Device ID 19) Motor Controller Startup Settings
l Talon SRX Brake Mode | Brake v |
p Talon SRX (Device 1D 2) Forward Limit-Switch l Normally Opened x }
Talon SRX Reverse Limit-Switch [Normally Opened v]
Talon SRX (Device ID 17)

Changing the settings will take effect once the “Save” button is pressed. The settings are saved
in persistent memory.

If the Brake or Limit Switch mode is changed in the roboRIO Web-based Configuration, the
Talon SRX will momentarily disable then resume motor drive. All other settings can be changed

without impacting the motor drive or enabled-state of the Talon SRX.

Additionally the brake mode can be modified by pressing the B/C CAL Button on the Talon SRX
itself, just like with previous generation Talons.

Cross The Road Electronics Page 30 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

4.3. Overriding Brake and Limit Switch with API
The Brake and Limit Switch can, to a degree, be changed programmatically (during a match). A
great example of this would be for dynamic braking.

The programming API allows for overriding the active neutral brake mode. When this is done
the Brake/Coast LED will reflect the overridden value (illuminated red for brake, off for coast)
regardless of the startup brake mode specified in the roboRIO Web-based Configuration (i.e.
what’s saved in persistent memory).

Similarly the enabled states of the limit switches (on/off) for the forward and reverse direction
can be individually enabled/disabled by overriding them with programming API.

The brake and limit switch overrides can be confirmed in the Self-Test results. If limit switches
are overridden by the robot application, the forced states are displayed as “forced ON” or
“forced OFF”. Also the currently active brake mode is in the Self-Test results.

Q The self test completed successfully.
TALON is enabled.
Mode : 0 : Throttle (duty cycle)

Applied Throttle : -7

I Brake during neutral I
CloseloopError : O
?mﬁl&Elotﬁelect]

:Eelecbed Device for Close Loop : 0 : Quad Erbcm:ler‘i
Pos: 0 i
Welocity: 0

Quad Encoder
Pos: O

Velocity : 0
APin: 1
BPin:1

Idx Pin : 1

Idx rise edges : 0

Analog Input

ADC : 1023

Pos (with overflows) : 1023
Velocity : 0

Fwd Limit Switch is Open
Rev Limit Switch is Open
Fuwd Limit Switch is forced ON
Rev Limit Switch is forced OFF

(Fanltl Mew (Shickw)

Cross The Road Electronics Page 31 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

4.3.1. LabVIEW
The CONFIG ENABLED LIMITS VI can be used to override the limit switch enable states. When
overriding the limit switch enable states, set the override signal to true, then pass true/false to
the forward and reverse limit switch enable.

Custormblotor

[Override Limit Switches]|
[Forward Limit Switch Enable| [i]
[Reverse Limit Switch Enable] [g].

The neutral brake mode can also be overridden to Brake or Coast using the CONFIG BRAKE
coasT vI. If “No Override” is selected then the Startup Brake Mode is used.

g TaLoH

COHFIG
ER&KE
COAST

4 Mo Override

Chwvernide to Coast
Cherride to Brake

4.3.2. C++
Limit Switches can be forced on or off using configLimitMode (), along with soft limits (see
Section 8. Soft Limits).

customMotorDescrip. ConfiglimitMode (CANSpeedController: kLimitMode SwitchInputsOnly); /* limit switches only */
customMotorDescrip. ConfiglimitMode (CANSpeedController::kLimitMode SoftPositionlimits); /* limits switches and soft-limits */
customMotorDescrip. ConfiglimitMode (CANSpeedController: :kLimitMode DisableSwitchInputs); /* disabled limit switches and disable soft-limits */

ConfigNeutralMode () can be used to override the brake/coast mode. Also selecting the
enumerated value of kNeutralMode Jumper Will signal the Talon SRX to use its default setting
(controlled by roboRIO Web-based Configuration and B/C CAL button).

customMotorDescrip.ConfigNeutralMode (CANSpeedController: :NeutralMode: : kNeutralMode_Brake); /* override to brake during neutral */
customMotorDescrip.ConfigNeutralMode (CANSpeedController: :NeutralMode: : kNeutralMode_Coast); /* override to coast during neutral */
customMotorDescrip.ConfigNeutralMode (CANSpeedController: :NeutralMode: : kNeutralMode_Jumper);/* default to flash setting - No Override */

4.3.3. Java
enableLimitSwitch () can be used to override the enabled state for forward and reverse limit
switch enable. enableBrakeMode () can be used to override the brake/coast setting.

customMotorDescrip.enablelimitSwitch(true, true) ; J* forward enable, reverse enakle =/
customMotorDescrip.enableBrakeMode (true) ; S#when in neutral : true for brake, false for coast */

Cross The Road Electronics Page 32 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

4.4. Changing limit switch mode between “Normally Open” or “Normally
Closed”

The limit switch setting that determines “Normally Open” vs “Normally Closed” can also be set
programmatically using the conrFIG LIMIT SwWITCH vI. However care should be taken when
this is done. When a Talon SRX’s limit switch mode is changed from its current setting to a
different value, it briefly disables motor drive during the transition. This should not be a problem
since the limit switches in the robot are typically not changed during a match.

However it may be convenient to ensure NO/NC settings at startup (particularly when using the
non-default setting of Normally Closed) so as to avoid needing to use the roboRIO Web-based
Configuration to select NC whenever a Talon SRX needs to be added/replaced.

4.4.1. LabVIEW

|F0rwarc| Limit Switch Mormally Open|
|Reverse Limnit Switch Normally Open|

4.42. C++
ConfigFwdLimitSwitchNormallyOpen () and ConfigRevLimitSwitchNormallyOpen () can
be used to change the NO/NC state of a limit switch input.

if(btn4){

customMotorDescrip. ConfigFwdLimitSwitchNormallyOpen(true); /* forward limit set to Normally Open */
telse if(btn2){

customMoteorDescrip.ConfigFwdLimitSwitchNormallyOpen(false);/* forward limit set to Mormally Closed */
h
if(btnl){

customMotorDescrip. ConfigReviimitSwitchNormallyOpen(true); /* reverse limit set t
telse if(btn3){

customMotorDescrip.ConfigRevlimitSwitchNormallyOpen(false);/* reverse Limi
b

4.4.3. Java
ConfigFwdLimitSwitchNormallyOpen () and ConfigRevLimitSwitchNormallyOpen () can
be used to change the NO/NC state of a limit switch input.

if(btna){

customMotorDescrip.ConfigFwdLimitSwitchNormallyOpen(true); /* forward limit set to Normally Open */
Jelse if(btn2){

customMotorDescrip.ConfigFwdLimitSwitchNormallyOpen(false);/* forward limit set to Normally Closed */
¥
if(btn1){

customMotorDescrip.ConfigRevLimitSwitchNormallyOpen(true); /* reverse limit set to Normally Open */
Jelse if(btn3){

customMotorDescrip.ConfigReviimitSwitchNormallyOpen(false);/* reverse limit set to Normally Closed */

Cross The Road Electronics Page 33 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

5. Getting Status and Signals

The Talon SRX transmits most of its status signals periodically, i.e. in an unsolicited fashion.
This improves bus efficiency by removing the need for “request” frames, and guarantees the
signals necessary for the wide range of use cases Talon supports, are available.

These signals are available in API regardless of what control mode the Talon SRX is in.
Additionally the signals can be polled in the roboRIO Web-based Configuration (see Section
2.4. Self-Test).

Included in the list of signals are...

- Quadrature Encoder Position, Velocity, Index Rise Count, Pin States (A, B, Index)

- Analog-In Position, Analog-In Velocity, 10bit ADC Value,

- Battery Voltage, Current, Temperature

- Fault states, sticky fault states,

- Limit switch pin states

- Applied Throttle (duty cycle) regardless of control mode.

- Applied Control mode: Voltage % (duty-cycle), Position/Velocity closed-loop, or slave follower.
- Brake State (coast vs brake)

- Closed-Loop Error, the difference between closed-loop set point and actual position/velocity.
- Sensor Position and Velocity, the signed output of the selected Feedback device (robot must
select a Feedback device, or rely on default setting of Quadrature Encoder).

Cross The Road Electronics Page 34 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

5.1. LabVIEW
The GeT sTaTUs VI can be used to retrieve the latest value for the signals Talon SRX
periodically transmits. Additionally, sticky faults can be cleared if “true” is passed into the “Clear
Sticky Fault” signal. To get a particular signal, unbundle-by-name the output of the GET sTATUS
vI. Then select the signal to get by right clicking the center of the unbundle object.

TALOH

|Pass true to clear sticky faults| [F]- " + Applied Throttle
Medule Enabled
CAN Error [2
Closed Loop Error
Forward Limit Switch Closed

Reverse Limit Switch Closed
Sensor Position

Sensor Velocity

Current

Sticky Fault - Over Temp
Sticky Fault - Under Vaoltage
Sticky Fault - Forward Limit
Sticky Fault - Reverse Limit
Sticky Fault - Forward Soft Limit
Sticky Fault - Reverse Soft Limit
Brake is Enabled

Encoder Position

Encoder Velocity

Encoder Index Count
Encoder & Pin State
Encoder B Pin State
Encoder Index Pin State
Analog In

Analog In Velocity
Temperature (C)

Battery Voltage

Cross The Road Electronics Page 35 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

52. C++
All get functions are available in C++. Here are a few examples....

double currentAmps = customMotorDescrip.GetOutputCurrent();
double outputV = customMotorDescrip.GetOutputVoltage();
double busV = customMotorDescrip.GetBusVoltage();

int guadEncoderPos = customMotorDescrip.GetEncPosition();
int guadEncoderVelocity = customMotorDescrip.GetEncVel();

int analogPos = customMotorDescrip.GetAnalogIn();
int analogVelocity = customMotorDescrip.GetAnalogInVel();

int selectedSensorPos = customMotorDescrip.GetPosition();
int selectedSensorSpeed = customMotorDescrip.GetSpeed();

int closeLoopErr = customMotorDescrip.GetClosedLoopError();
if(bEverysecond){

printf{"currentAmps % \n", currentimps);
printf{"outputV:%f\n", cutputv);
printf("busV:%f\nin" ,busv);

printf("quadEncoderPos:%1i\n" ,quadEncoderPos);
printf{"quadEncoderVelocity %i\n\n",quadEncoderVelocity);

printf({"analogPos:¥i\n" ,analogPos);
printf("analogVelocity:%i\n\n",analogVelocity);

printf(“"selectedsensorPos:%i\n",selectedSensorPos);
printf("selectedSensorspeed:¥iin\n",selectedSensorSpeed);

printf({“"closeloopErr:¥i\n",closeloopErr);

Cross The Road Electronics Page 36 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

5.3. Java
All get functions are available in java. Here are a few examples....

double currentAmps = _talons[masterId].getOQutputCurrent();
double cutputV = _talons[masterId].getOutputVoltage();

double busV = _talons[masterId].getBusVoltage();

double quadEncoderPos = _talens[masterId].getEncPosition();
double quadEncoderVelocity = talons[masterId].getEncVelocity();
int analogPos = _talons[masterId].getfnalogInPosition();

int analogVelocity = _talons[masterId].getfAnalogInVelocity();
double selectedSensorPos = _taleons[masterId].getPosition();
double selectedSensorSpesd = talons[masterId].getSpeed();

int closeloopErr = _talons[masterId].getClosedLoocpError();

if(bEverySecond){
System.out.println{"currentimps™ + currentfmps);
System.out.println("outputV:” + ocutputV);
System.out.println("output®:" + 188*(outputV / busv) };
System.out.println("busv:" + busV};
System.out.println("");
System.out.println("quadEncederPos:
System.out.println("quadEncoderVelocity:
System.out.println("");
System.out.println(“analogPos:" + analogPos);
System.out.println(“analogVelocity:"” + analogVelocity);
System.out.println("");
System.out.println("selectedSensorPos:” + selectedSensorPos);
System.out.println("selectedSensorspeed:” + selectedSensorSpeed);
System.out.println("");

System.out.println{"closeloopErr:

"

+ quadEncoderPos);
" + quadEncoderVelocity);

"

"

"

+ closeloopErr);

Cross The Road Electronics Page 37 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

6. Setting the Ramp Rate

The Talon SRX can be set to honor a ramp rate to prevent instantaneous changes in throttle.
This ramp rate is in effect regardless of which mode is selected (throttle, slave, or closed-loop).

6.1. LabVIEW
Use the SET VOLTAGE RAMP to specify the ramp rate in percent per second.

|Thr0tt|e Ramp Rate (p ercenta’s”
[0% to 50% in one second 0.3

6.2. C++
Ramp can be set in Volts per second using setvoltageRampRate ().
customMotorDescrip. SetVoltageRampRate(6.8); /* @8V to 6V in one second */
6.3. Java

Ramp can be set in Volts per second using setvoltageRampRate () .
customMotorbescrip. setVoltageRampRate(6); /* @V to 6V in one second */

6.4. What is the slowest ramp possible?

The Talon SRX internally expresses the (Voltage) Ramp Rate in throttle units per 10ms (see
Section 17.6). As a result, at the minimum (slowest) ramp rate, the time from zero-to-full-throttle
is 10.23 seconds. This is derived from 1 throttle unit per 10ms. In terms of voltage per second,
this is equivalent to 1.173 V per second or 9.77% per second. When choosing an initial ramp
rate avoid specifying a rate that is slower than this limitation. Choosing a slower rate than
what’s possible will cause the programming API to truncate the calculated result to zero throttle
units per 10ms, leading to the effect of no ramp at all.

Cross The Road Electronics Page 38 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

7. Selecting a Feedback Device

Although the analog and quadrature signals are available all the time, the Talon SRX requires
the robot application to “pick” a particular “Feedback Device” for soft limit and closed-loop
features.

The selected “Feedback Device” defaults to Quadrature Encoder.

Once a “Feedback Device” is selected, the “Sensor Position” and “Sensor Velocity” signals will
update with the output of the selected feedback device. It will also be multiplied by (-1) if
“‘Reverse Feedback Sensor" is asserted programmatically.

Alternatively the output of the closed loop logic can also be inverted if necessary.

7.1. LabVIEW
Use SET REF to select which Feedback Sensor to use for soft limits and closed-loop features.
The supported selections are: Quadrature Encoder, Analog Encoder (or any continuous 3.3V
analog sensor) and Analog Potentiometer.
E

(* Digital Quadrature Encoder "l—ﬁ
REF

[Reverse Feedback Ser15u:ur||E|‘"""""""""""'E :
[Reverse Closed-Loop Output|E

7.2. C++

SetFeedbackDevice () can be used to select Quadrature Encoder, Analog Encoder (or any
continuous 3.3V analog sensor) or Analog Potentiometer. Depending on software release
EncRising may also be supported (increment position per rising edge on Quadrature-A).

customMotorDescrip.SetFeedbackDevice(CANTalon: :QuadEncoder); /* Quadrature encoder */
customMotorDescrip.SetFeedbackDevice (CANTalon: :AnalogPot); /* Absclute analog signal, @-3.3
customMotorDescrip.SetFeedbackDevice(CANTalon: :AnalogEncoder); /* Relative analog signal, @-3.3

SetSensorDirection () can be used to keep the sensor and motor in phase for proper limit
switch and closed loop features. This functions sets the "Reverse Feedback Sensor" signal.

/* pass true to reverse feedback sensor, false to leave it pure. */
customMotorDescrip. SetSensorDirection(true);

Cross The Road Electronics Page 39 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

7.3. Java
setFeedbackDevice () can be used to select Quadrature Encoder, Analog Encoder (or any
continuous 3.3V analog sensor) or Analog Potentiometer. Depending on software release

EncRising may also be supported (increment position per rising edge on Quadrature-A).
FeedbackDevice device |
customMotorDescrip. setFeedbackDevice([FeedbackDevice] ;|
i*FArbalt:!glfrhcn‘.!dt:l: CANTalon.FeedbackDevice - CANTalon, »
i"FaF-\naIrt:-chﬂ: CANTalon.FeedbackDevice - CANTalon Feed
Y EncFalling : CAMTalon.FeedbackDevice - CAMNTalon Feed|
¥ EncRising : CANTalon.FeedbackDevice - CANTalon Feedk
|§JFQuadEncoden CANTalon.FeedbackDevice - CANTalon.Fe
.Svalue[)‘l(int argQ) : FeedbackDevice - FeedbackDevice
& valueQf(5tring name) : FeedbackDevice - FeedbackDevice
o class: Class<edu.wpifirstwpilibj.CANTalon.FeedbackDev
évalu&{}: FeedbackDevice[] - FeedbackDevice
this
OgvalueDi(ClaHCTh- argl, String arg1): T - Enum hd
£ >
Press "Ctrl+=Space’ to show Template Proposals

reverseSensor () and reverseOutput () are also available in java. reverseSensor () sets
the "Reverse Feedback Sensor"” signal. reverseoutput () sets the "Reverse Closed-Loop
Output” signal.

/* pass true to reverse feedback sensor, false to leave it pure. */

customMotorDescrip. reverseSensor(true);
/* pass true to reverse the output of the closed loop math as an alternative method to flip motor direction.

* Typically reverseSensor is sufficient to keep sensor and motor in
* phase for proper limit switch and closed loop features. */
customMotorDescrip. reverseQutput(false);

Cross The Road Electronics Page 40 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

7.4. Reversing sensor direction, best practices.
In order for limit switches and closed-loop features to function correctly the sensor and motor
has to be “in-phase”. This means that the sensor position must move in a positive direction as
the motor controller drives positive throttle. To test this, first drive the motor manually (using
gamepad axis for example). Watch the sensor position either in the roboRIO Web-based
Configuration Self-Test, or by calling GetSensorPosition () and printing it to console. If the
“Sensor Position” moves in a negative direction while Talon SRX throttle is positive (blinking
green), then use the “Reverse Feedback Sensor” signal to multiply the sensor position by (-1).
Then retest to confirm “Sensor Position” moves in a positive direction with positive motor drive.

The salf test completed successfully.

TALOMN is enabled.

Mode : 0 : Throttle (duty cycle)

Applied Throttle : 7

Coast during neutral

CloselocpError : O
ProfileSlotSelect : 0

When using the Self-Test be sure to track the Selected Device
Selected Device for Close Loop : 0 : Quad Encoder
por: 39213 Position which is above the Quadrature Encoder signals. These
signals will reflect if "Reverse Feedback Sensor" is asserted.

Quad Encoder
Pos: -53213
velocity : O

A Pin: 0

BPRin: 1

Idx Pin : 1

Idx rise edges : 0

Analog Input

ADC : 0

Pos (with overflows) : 0
Velocity : O

Fwd Limit Switch is Open
Rev Limit Switch is Open

In the special case of using the EncRising feedback device, "Reverse Feedback Sensor" will
need to be false. This Feedback Device is guaranteed to be positive since it increments per
rising edge, and never decrements. "Reverse Closed-Loop Output” can then be used to output
a negative motor duty-cycle. "Reverse Closed-Loop Output” can also be used to reverse a slave
Talon SRX to be the signed opposite of the master Talon SRX.

Cross The Road Electronics Page 41 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

8. Soft Limits

Soft limits can be used to disable motor drive when the “Sensor Position” is outside of a
specified range. Forward throttle will be disabled if the “Sensor Position” is greater than the
Forward Soft Limit. Reverse throttle will be disabled if the “Sensor Position” is less than the
Reverse Soft Limit. The respective Soft Limit Enable must be enabled for this feature to take
effect.

The settings can be set and confirmed in the roboRIO Web-based Configuration.

| Search] Refresh Self-Test

A Hargwara Revision 1.4
roboRIO —

roboRIO-217 Manufacture Date Mov 2, 2014
Bootloader Revision 2.8
P @r-“ﬂ Interface Vendor Cross The Road Electronics
<al
Model Talon SRX
PCM Firmware Revision 1.1
PCM (Device ID 0) ctatus Sresant
FOP
PDP (Device 1D 0)
Talon SRX
. Talon SRX (Device 1D 3) Motar Controller Startup Settings
Telon Sk S—
Talon SRX (Device 1D 15}
¢ Forward Limit-Switch Normally Opened -
Talon SRX Reverse Limit-Switch Normally Opened >
Talon SRX (Device 1D 11}
Talon SRX o
l Talon SRX (Devics 10 17) ErilM—s
Talon SRX || Forvard Soft Limit Enable
b Talen SRX (Device 1D 1) Forward Soft Limit 0
Talon SRX || Reverse Soft Limit Enable
b Talon SRX (Device 1D 8) Reverse Soft Limit 1]
Talon SRX
Telon SRX (Device 10 13) T —— R

The soft limits can also be set up programmatically. In LabVIEW, Soft Limit enables and
thresholds can be set using both the cCONFIG ENABLED LIMITS VI and CONFIG SOFT LIMITS
VI.

|Override Limit Switches| [i]--
[Forward Limit Switch Enable| [iGE]-
[Reverse Limit Switch Enable]

TALOH

GOMFIG
Z0FT
LIMITE

[Forward Soft Limit Enable]

[Reverse Soft Limit Enable]
[Forward Soft Limit |~ [1000]
[Reverse Soft Limit | |-1000]

Cross The Road Electronics Page 42 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

8.2. C++
ConfigLimitMode () can be used to enable soft limits (and optionally limit switches if they are
wired).
customMotorDescrip. ConfiglimitMode(CANSpeedController: :kl imittode SoftPositionlimits); /* limits switches and soft-limits */

customMotorDescrip. ConfigForwardLimit(20686);
customMotorDescrip. ConfigReverselimit(-20008);

/* set forward soft limit to 28,888 */
/* set reverse soft limit to -20,080 */

8.3. Java

The limit threshold and enabled states can be individually specified using:
setForwardSoftLimit (), enableForwardSoftLimit (), setReverseSoftLimit (), and

enablReverseSoftLimit ().

customMotorDescrip.setForwardSoftLimit (16006 ;

customMotorDescrip.enableForwardSoftlimit(true);
customMotorDescrip.setReverseSoftLimit(-10868);
customMotorDescrip.enableReverseSoftlimit(true);

Cross The Road Electronics

Page 43

Jlf*

II,I'*
.fr*

set forward soft limit to 18,888 */
enable forward soft limit */

set reverse soft limit to -1@,888 */
enable reverse soft limit */

2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

9. Follower Mode

Any given Talon SRX on CAN bus can be instructed to “follow” the drive output of another Talon
SRX. This is done by putting a Talon SRX into “slave” mode and specifying the device ID of the
“Master Talon” to follow. The “Slave Talon” will then mirror the output of the “Master Talon”.
The “Master Talon” can be in any mode: closed-loop, voltage percent (duty-cycle), or even
following yet another Talon SRX.

9.1. LabVIEW
When opening a Talon SRX, the Master Device Number determines which Talon to follow when
in Slave Mode. The cHANGE MODE VI can also be used to enter Slave mode and specify the
Master Device ID to follow.

i" Percent VBus '|—| Trlator
: b
Device Number E orEn CustomMotor
TALOH
CAN Talon 5RX *
initialize a slave motor
- -
N Sevahioto

TALON

Master Device Number CAN Talon SRX +

9.2. C++
CANTalon objects can be constructed with the Follower mode, or can be changed afterwards.
Pass the device ID of the Master Talon into set (). The device ID should be between 0 and 62
(inclusive).

slaveMotor.SetControlMode (CANSpeedController: :kFollower); /* set this motor to follow another TALON */
slaveMotor.Set(2); /* follow master TALON with device ID 2 */
9.3. Java

CANTalon objects can be constructed with the Follower mode, or can be changed afterwards.
Pass the device ID, of the Master Talon into set(). The device ID should be between 0 and 62
(inclusive). Alternatively you can call the getDeviceID () routine of the Talon object created
with the Master Talon SRX’s device ID.

slaveMotor. changeControlMode (CANTalon. ControlMode. Fol Lower) ;
slaveMotor.set(customMotorDescrip. getDeviceID());

9.4. Reversing Slave Motor Drive
"Reverse Closed-Loop Output" can be used to invert the output of a slave Talon. This may be
useful if a slave and master Talon are wired out of phase with each other.

Cross The Road Electronics Page 44 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

10. Closed-Loop Modes

The 2015 release firmware for Talon SRX supports position closed-loop and velocity closed-
loop. The actual implementation can be seen in Section 18. How is the closed-loop
implemented? . Future firmware updates will include Current Closed-Loop, Voltage
compensation, and other modes.

11. Motor Control Profile Parameters

The Talon persistently saves two unique Motor Control Profiles.
Each Motor Control Profile contains...

P Gain: K, constant to use when control mode is a closed-loop mode.

| Gain: K, constant to use when control mode is a closed-loop mode.

D Gain: Kp constant to use when control mode is a closed-loop mode.

F Gain: Kr constant to use when control mode is a closed-loop mode.

| Zone: Integral Zone. When nonzero, Integral Accumulator is automatically cleared

when the absolute value of Closed-Loop Error exceeds it.

(Closed-Loop) Ramp Rate: Ramp rate to apply when control mode is a closed-loop

mode.
One unique feature of the Talon SRX is that gain values specified in a Motor Control Profile are
not dedicated to just one type of closed-loop. When selecting a closed-loop mode (for example
position or velocity) the robot application can select either of the two Motor Control Profiles to
select which set of values to use. This can be useful for gain scheduling (changing gain values
on-the-fly) or for persistently saving two sets of gains for two entirely different closed loop
modes.

The settings can be set and read in the web control page.

Reverse Soft Limit -1000

Motor Controller Closed-Loop Control Parameters Slot 0

P Gain 0.2

I Gain 0.002
D Gain 2
Feed-Forward Gain _0.0002
I Zone 200

Ramp Rate 256

Motor Controller Closed-Loop Control Parameters Slot 1

P Gain 0.1
I Gain 0.001

D Gain 1

Feed-Forward Gain 0.0001
I Zone 100

Ramp Rate 256

Cross The Road Electronics Page 45 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

11.1. Persistent storage and Reset/Startup behavior
The Talon SRX was designed to reduce the “setup” necessary for a Talon SRX to be functional,
particularly with closed-loop features. This is accomplished with efficient CAN framing and
persistent storage.

All settings in the Motor Control Profile (MCP) are saved persistently in flash. Additionally there
are two complete Motor Control Profiles. Teams that use a constant set of values can simply
set them using the roboRIO Web-based Configuration, and they will “stick” until they are
changed again.

Additionally Motor Control Profile (MCP) Parameters can be changed though programming API.
When they are changed, the values are ultimately copied to persistent memory using a wear
leveled strategy that ensures Flash longevity, but also meets the requirements for teams.
-Changing MCP values programmatically always take effect immediately (necessary for gain
tuning).

-If the MCP Parameters have remained unchanged for fifteen seconds, and an MCP Parameter
value is then changed using programming API, they are copied to persistent memory
immediately.

-If the persistent memory has been updated within the last fifteen seconds due to a previous
value change, and an MCP Parameter value is changed again, it will be applied to persistent
memory once fifteen seconds has passed since the last persistent memory update. However
the closed-loop will react immediately to the latest values sent over CAN bus.

-If power loss occurs during the period of time when MCP Parameters are being saved to
persistent storage, the previous values for all MCP Parameters prior to last value-change is
loaded. This is possible because the Talon SRX keeps a small history of all value changes.

These features fit well with the two common strategies that FRC teams utilize when
programmatically changing closed-loop parameters...

(1) Teams use programming API at startup to apply previous tested constants.
(2) Teams use programming API to periodically set/change the constants because they are
“gain scheduled” or action specific.

For use case (1), the constants are eventually saved in Talon SRX persistent memory (worst
case fifteen seconds after robot startup). Once this is done the Talon SRX will have the values
in persistent storage, so even after Talons are power cycled, they will load the constants that
were previous set. This frees the robot controller from needing to re-set the values during a
power cycle, reset, brownout, etc.... On subsequent robot startups, when the robot controller
sends the same values again, and Talon SRX will still react by updating its variables, and
comparing against what’s saved in persistent storage to see if it needs to be updated again. In
the event the robot code changes to use new constants, the Talon will again update the
persistent storage shortly after getting the new values.

Cross The Road Electronics Page 46 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

For use case (2) teams, there are two “best” solutions depending on what’s being
accomplished. If a team needs to switch between two sets of gains, they can leverage both
MCP slots by setting one set of constants in slot 0, and another unique set of constants in slot 1.
Then during the match, teams can switch between the two with a single APIl. This means that
as far as the Talon is concerned, the values in each slot never changes so the contents of the
Talon’s persistent storage never changes. Instead the robot controller just changes which slot
to use. So this use case regresses to use case (1), and a freshly booted Talon already has all
the MCP parameters it needs to function.

For use case(2) teams that requires more than two gain sets likely are changing gain values so
frequently (as a function of autonomous, or state machine driven logic) that they would prefer
not to rely on the previous set of gains sent to the Talon (despite it being available at startup).

In which case they likely will periodically set the MCP parameters continuously (every number of
loops or fixed period of time). Talon SRX always honors whatever parameters are requested
over CAN bus, overriding what was loaded at startup or mirrored in persistent storage. And
since the persistent storage is wear-leveled and mirrored at fifteen second intervals, this has no
harmful impact on Flash longevity. So this use case is also supported well.

Beyond the Motor Control Profile Parameters, closed-loop modes requires selecting
-which control mode (position or velocity)

-which feedback sensor to use

-if the feedback sensor should be reversed

-if the closed-loop output should be reversed

-what is the latest target or set point

-the global ramp rate (if specified)

-which Motor Control Profile Slot to use.

The programming API provides set functions for all of these, but what’s noteworthy is that all of
these signals are saved in the robot controller, and periodically sent inside one complete CAN
frame. This means that if a Talon SRX loses power and is booted back up again (due to cable
disconnect, battery brownout, etc...) the Talon receives all of the necessary signals after getting
one single control frame. This is far more robust than requiring the robot application to re-set
and re-acknowledge each parameter individually in the event of a reset.

Cross The Road Electronics Page 47 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

11.2. Inspecting Signals

When testing/calibrating closed-loops it is helpful to plot/check...
-Closed-Loop Error

-Output (Applied) Throttle

-Profile Slot Select (which profile slot the closed-loop math is using).
-Position and Velocity depending control mode.

The Self-Test can provide these values for quick sanity checking. These values are also
available with programming API for custom plotting, smart dashboard, LabVIEW front panels,
etc...

0 The self test completed successfully.
TALOM is enabled.

Mode : O : Throttle (duty cycle)
Applied Throtte : 7
Coast during neutra

CloseloopErrer : 0
ProfileSlotSelect : O

Selected Device for Close Loop @ 0 : Quad Encoder
Pos: -53213
Velocity: 0

Quad Encoder
Pos: -53213
Velocity : 0

A Pin: 0

B Pin: 1

Idx Pin : 1

Idx rise edges : 0

Analog Input

ADC : 0

Pos (with overflows) : O
Velocity 1 0

Fuwrd Limit Switch is Open
Rev Limit Switch is Open

Cross The Road Electronics Page 48 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

12. Position/Velocity Closed-Loop Example

12.1. Setting Motor Control Profile Parameters

12.1.1. LabVIEW
Setting the Motor Controller Profile parameters can be done with the SET PID VI.
This allows filling all parameters for a given Parameter Slot.

Parameter Slot '

0] |Close Loop Ramp Rate |

Specifying the set point is also done with the Set Output VI. Additionally you can select the

Parameter Slot to use for the selected closed-loop.
|

Set Point (output)

12.1.2. C++
Closed-loop parameters for a given profile slot can be modified with several different functions.
double p = 8.3; /*Kp */
double i = ©.083; S*EL ¥/
double d = 3; /*Kd */
double f = ©.0803; /*KE */
int izone = 388; /* encoder ticks / analeg units */

double ramprate = 48; /* volts per second, =» @% to 1l@eX in 25@ms */
int profile = 1; /* can be 8 or 1 */
customMotorDescrip.SelectProfileslot(profile);
customMotorDescrip.SetPID(p, i, d, f);
customMotorDescrip.SetIzone(izone);
customMotorDescrip.SetCloseloopRampRate (ramprate);

Setting the target position or velocity is also done with set () .
customMotorDescrip.Set(targetPosOrvel); /* use Set() to servo to target position or velocity */

12.1.3. Java
Closed-loop parameters for a given profile slot can be modified using setpID (). This also sets
the “Profile Slot Select” to the slot being modified. There are also individual Set functions for
each signal.

double p = 8.1; /*Kp */
double i = 8.@81; f*eL *f
double d = 1; f*kd */
double f = @.@801; f*RE *f
int izone = 18@; /* encoder ticks / analeog units */

double ramprate = 36; /* wolts per second */
int profile = 8; /* can be @ or 1 */
customMotorDescrip.setPID(p, i, d, f, izone, ramprate, profile);

Setting the target position or velocity is also done with set ().
customMotorDescrip.set(targetPos0rVel); /* use set() to servo to target position or velocity */

Cross The Road Electronics Page 49 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

12.2. Clearing Integral Accumulator (I Accum)

Clearing the integral accumulator (“I Accum”) may be necessary to prevent integral windup.
When using “I Zone” this is done automatically when the Closed-Loop Error is outside the

“l Zone”. However there may be other situations when manually clearing the integral
accumulator is necessary. For example, if the mechanism that’s being closed-looped is “close
enough” and its desirable to reduce occasional spurts of movement caused by a slowly
incrementing integral term, then the robot logic can periodically clear the “I Accum” to prevent
this.

12.2.1. LabVIEW
In this example a case structure is leveraged to conditionally clear the Integral Accumulator
when the case structure conditional evaluates true (this example uses a system button on the
front panel).

Clear | accurmn

ok |

REZET
TF F INTGRL
& ACCUF

12.2.2. C++/Java
The clearIaccum() function is available in C++/Java.

customMotorDescrip.ClearIaccum();

12.2.3. Is Integral Accum cleared any other time?
In addition to the “I Zone” feature and manual clear, there are certain cases where the integral
accumulator is automatically cleared for more predicable motor response...
-Whenever the control mode of a Talon is changed.
-When a Talon is in the disabled state.
-When the motor control profile slot has changed.

Cross The Road Electronics Page 50 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

13. Setting Sensor Position

Depending on the sensor selected, the user can modify the “Sensor Position”. This is
particularly useful when using a Quadrature Encoder (or any relative sensor) which needs to be
“zeroed” or “home-ed” when the robot is in a known position.

Firmware 1.1: When using an “Analog Encoder”, setting the “Sensor Position” updates the top

14 bits of the 24bit Sensor Position value (which is the overflow/underflow portion). The bottom
10 bits will still reflect the analog voltage scaled over 3.3V (read only). With version 1.4 and on
the full Sensor Position can be set.

Setting this signal when “Analog Potentiometer” is selected has no effect.

13.1. LabVIEW
In order to modify the “Sensor Position”, user will likely have to leverage the
WPI CANTalonSRX SetParameter.vi. This can be drag dropped after locating the LabVIEW
installer directory and searching for the VI file location. Select “Sensor Position” for the
“Parameter” signal and the desired constant for the “Value” signal. In this example “0” is
selected to re-zero the sensor when a front panel button is pressed.

SetPosTodfern

||:.':'-.N.DE‘.-'iCE Numlser|

rSensnr Position | =
TALOH
E_I_SET FEHM|

13.1.1. Motor Enable

Alternatively the Motor Enable VI can be used to change the Sensor Position. If the Robot
Application needs to turn on/off motor control in a periodic fashion, change the control mode
instead (see Section 3.6) since this VI has the side effect of modifying Sensor Position.

Makar

[Sensor Initial Position| [p] [Embl

13.2. C++
SetPosition () can be used to change the current sensor position, if a relative sensor is used.
customMotorDescrip.SetPosition(8); /* set the sensor positicn teo zero */
13.3. Java

setPosition () can be used to change the current sensor position, if a relative sensor is used.

customMotorDescrip.setPosition(@®); /* set the sensor position to zero */

Cross The Road Electronics Page 51 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

14. Fault Flags

The GeT sTaTUus vI can be used to retrieve sticky flags, and clear them.

14.1. LabVIEW

E Stick Owver Ternp
TF

T ‘ @ |[icky Under Voktage
Clear Sticky Faults Sticky Fault - Over Temp T
Sticky Fault - Under Voltage : Sticky Forward Limit
................................... T ticky Fault - Forward Limit
o i |, |[_Sticky Fault - Forward Limi Q@
TF TF

Sticky Fault - Reverse Limit
Sticky Fault - Forward Soft Limit
Sticky Fault - Reverse Soft Limit

Sticky Reverse Limit

Sticky Forward Soft Limit

Sticky Reverse Soft Limit

14.2. C++
Use GetFaults () and GetStickyFaults () to getintegral bit fields that can be masked against
the constants available in the caNSpeedController header.

ClearStickyFaults () can be used to clear all sticky fault flags.

if(btns){
customMotorDescrip.ClearStickyFaults(); /* clear sticky faults */
¥
if(bEverySecond)q{
int faults = customMotorDescrip.GetFaults(); /* get bitfield of all faults */

int stickyFaults = customMotorDescrip.GetStickyFaults();/* get bitfield of all sticky faults */

if(faults & CANSpeedController::kTemperatureFault)
printf("kTemperatureFault\rin");

if(faults & CANSpeedController::kBusVoltageFault)
printf("kBusVoltageFault\rin");

if(faults & CANSpeedController::kFwdlimitswitch)
printf{"kFwdLimitSwitch\rin™);

if(faults & CANSpeedController::kReviimitsSwitch)
printf{"kRevLimitSwitch\rin™);

if(faults & CANSpeedController::kFwdSoftlimit)
printf("kFwdSoftLimith\rin");

if(faults & CANSpeedController::kRevSoftlimit)
printf("kRevSoftLimithrin");

if(stickyFaults & CANSpeedController::kTemperatureFault)
printf("Sticky - kTemperatureFault\rin");
if(stickyFaults & CANSpeedController::kBusVoltageFault)
printf("sticky - kBusVeltageFault\rin");
if(stickyFaults & CANSpeedController::kFwdlimitswitch)
printf("sticky - kFwdLimitSwitch\rin");
if(stickyFaults & CANSpeedController::kReviimitswitch)
printf("sticky - kRevLimitSwitch\r\n");
if(stickyFaults & CANSpeedController::kFwdSoftlimit)
printf("sticky - kFwdSeftLimit\rin");
if(stickyFaults & CANSpeedController::kRevSoftlimit)
printf("sticky - kRevSoftLimit\rin");

Cross The Road Electronics Page 52 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

14.3. Java

Use the various getFault<name>and getStickyFault<name> functions to individually detect

the various fault conditions.
getFaultOverTemp ()
getFaultUnderVoltage ()
getFaultForLim()
getFaultRevLim ()
getFaultForSoftLim()
getFaultRevSoftLim()
getStickyFaultOverTemp ()
getStickyFaultUnderVoltage ()
getStickyFaultForLim()
getStickyFaultRevLim /()
getStickyFaultForSoftLim()
getStickyFaultRevSoftLim()

clearStickyFaults () can be used to clear all sticky fault flags.

if(btns){
customMotorDescrip. clearStickyFaults(); /* clear sticky faults */

if(bEverysecond){

if (customMotorDescrip.getFaultOverTemp() '= 8)
System.out.println("FaultOverTemp™);

if(customMotorDescrip.getFaultUnderVoltage() != @)
System.ouwt.println("FaultUnderVoltage™);

if (customMotorDescrip.getFaultForlim() != @)
System.out.println{"FaultForLim"};

if{customMotorDescrip. getFaultReviim() != @)
System.out.println("FaultRevLim");

if(customMotorDescrip.getFaultForSoftlim() != @)
System.out.println("FaultForsoftlim™);

if (customMotorDescrip.getFaultRevSoftlim() !'= @)
System.out.println("FaultRevSoftlim™);

if(customMotorDescrip.getStickyFaultOverTemp() != @)
System.out.println("stickyFaultOverTemp”);

if (customMotorDescrip. getStickyFaultUnderVoltage() '= @)
System.out.println("StickyFaultUnderVoltage™);

if({customMotorDescrip.getStickyFaultForLim() != @)
System.out.println("stickyFaultForLim™);

if (customMotorDescrip. getStickyFaultRevLlim() != @)
System.out.println("StickyFaultRevLlim™);

if{customMotorDescrip. getStickyFaultForSoftlim() != @)
System.out.println("StickyFaultForSoftlim™);

if(customMotorDescrip.getStickyFaultRevsoftLim() != @)
System.out.println("stickyFaultRevsoftLlim™);

Cross The Road Electronics Page 53 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

15. CAN bus Utilization/Error metrics

The driver station provides various CAN bus metrics under the “lightning bolt” tab.

Utilization is the percent of bus time that is in use relative to the total bandwidth available of the
1Mbps Dual Wire CAN bus. So at 100% there is no idle bus time (no time between frames on
the CAN bus).

Demonstrated here is 69% bus use when controlling 16 Talon SRXs, along with 1 Pneumatics
Control Module (PCM) and the Power Distribution Panel (PDP).

Faults CAN Metrics Team # 217

Comms 0 utilization % 69 Tr
Sk B 1248V
12V 0 Bus Off 0

6V 0 TXFull 0

5V 0 Receive 0

3.3V 0 Transmit 0 Teleoperated
Enabled

The “Bus Off” counter increments every time the CAN Controller in the roboRIO enters “bus-off”,
a state where the controller “backs off” transmitting until the CAN bus is deemed “healthy”
again. A good method for watching it increment is to short/release the CAN bus High and Low
lines together to watch it enter and leave “Bus Off” (counter increments per short).

The “TX Full” counter tracks how often the buffer holding outgoing CAN frames (RIO to CAN
device) drops a transmit request. This is another common symptom when the roboRIO no
longer is connected to the CAN bus.

The “Receive” and “Transmit” signal is shorthand for “Receive Error Counter” and “Transmit
Error Counter”. These signals are straight from the CAN bus spec, and track the error instances
occurred “on the wire” during reception and transmission respectively. These counts should
always be zero. Attempt to short the CAN bus and you can confirm that the error counts rise
sharply, then decrement back down to zero when the bus is restored (remove short, reconnect
daisy chain).

When starting out with the FRC control system and Talon SRXs, it is recommend to watch how
these CAN metrics change when CAN bus is disconnected from the roboRIO and other CAN
devices to learn what to expect when there is a harness or a termination resistor issue.
Determining hardware related vs software related issues is key to being successful when using
a large number of CAN devices.

Cross The Road Electronics Page 54 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

15.1. How many Talons can we use?
Generally speaking a maximum of 16 Motor controllers can be powered at once using a single
PDP (sixteen breaker slots). However FRC game rules should always be checked as it
determines what it considered legal. This is typically the bottleneck for how many Talon SRXs
can be used despite having CAN device ID space for 63 device IDs. Release software is
always tested to support 16 Talon SRXs, 1 PCM, and 1 PDP with guaranteed control of each
Talon at a rate of 10ms. However this is not the limit. There is still additional bandwidth for
more nodes. Additionally, if faster response time is desired, control frame periods can be
decreased from the default 10ms, but keep a watchful eye of the CAN bus utilization to ensure
reliable communication.

Cross The Road Electronics Page 55 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16. Troubleshooting Tips and Common Questions

16.1. When | press the B/C CAL button, the brake LED does not change,

neutral behavior does not change.

This is the expected behavior if the robot application is overriding the brake mode. The B/C
CAL button press does toggle the brake mode in persistent memory, however the LED and
selected neutral behavior will honor the override sent over CAN bus. Check if the override API
is being used in the robot application logic.

16.2. Changing certain settings in Disabled Loop doesn’t take effect until

the robot is enabled.

This is the expected behavior, the control frame that updates the Talon SRX with the latest
brake/limit switch override, control mode, and set-point does not get transmitted in robot-disable
mode. However the values are saved so that when the robot is enabled, the first control frame
sent will have up to date values.

For example, the B/C CAL LED will not reflect changes in the overridden brake mode if
SetBrake () is called in the disabled loop until after the robot has been enabled. Once the robot
is enabled, the control frame sent to the Talon will enable the motor controller and contain the
latest settings that were cached during disabled loop (including the brake override).

Similarly Self-Test results also won't reflect parameters that are changed programmatically until
the robot is enabled, specifically the brake/limit switch overrides.

The startup values for limit switch and brake mode can be specified in the roboRIO’s Web-
based Configuration if they must be configured prior to robot enable.

16.3. The robot is TeleOperated/Autonomous enabled, but the Talon SRX

continues to blink orange (disabled).

Most likely the device ID of that Talon is not being used. In other words there is no Open Motor
(LabVIEW) or constructed CANTalon (C++/Java) with that device ID. This can be confirmed by
doing a Self-Test in the roboRIO Web-based Configuration, and confirm the “TALON IS NOT
ENABLED!” message at the top.

16.4. When | attach/power a particular Talon SRX to CAN bus, The LEDs on

every Talon SRX occasionally blink red. Motor drive seems normal.

If there is a single CAN error frame, you can expect all Talon SRXs on the bus to synchronously
blink red. This is a great feature for detecting intermittent issues that normally would go
unnoticed. If attaching a particular Talon brings this behavior out, most likely its device ID is
common with another Talon already on the bus. This means two or more “common ID” Talon
SRXs are periodically attempting to transmit using the same CAN arbitration ID, and are
stepping on each other’s frame. This causes an intermittent error frame which then reveals

Cross The Road Electronics Page 56 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

itself when all Talon SRXs blink red. Check the roboRIO Web-based Configuration for the
“There are X devices with this Device ID” explained in Section 2.2. Common ID Talons.

16.5. If | have a slave Talon SRX following a master Talon SRX, and the
master Talon SRX is disconnected/unpowered, what will the slave Talon
SRX do?

The slave Talon SRX monitors for throttle updates from the master. If the slave Talon doesn’t

see an update after 100ms, it will disable its drive. The LEDs will reflect robot-enable but with
zero throttle (solid orange LEDSs).

16.6. Is there any harm in creating a software Talon SRX for a device ID
that’s not on the CAN bus? Will removing a Talon SRX from the CAN bus

adversely affect other CAN devices?

No! Attempting to communicate with a Talon SRX that is not present will not harm the
communication with other CAN nodes. The communication strategy is very different than
previously support CAN devices, and this use case was in mind when it was designed.

Creating more Talon software objects (LabVIEW Motor Open, or C++/Java class instances) will
increase the bus utilization since it means sending more frames, however this should not
adversely affect robot behavior so long as the bus utilization is reasonable.

However the resulted error messages in the DS may be a distraction so when permanently
removing a Talon SRX from the CAN bus, it is helpful to synchronously remove it from the robot
software.

16.7. Driver Station log says Error on line XXX of CANTalon.cpp

Team # 217
TeleOperated Elapsed Time 0:23.7 SE= &l Y

Autonomous D 14.27 V Error on line 510 o
-& PC Battery at /home/|

Practice I Communications at /hom
Test LLPU % Robot Code mm Yy . am
at/ erPrograr c]

) IoEms— erPrGgram(f] [oxf21c]
Window = [
EIE Teleoperated

TEIEEED | (el T Enabled at /home/Ivuser/FRCUserProgram() [0x11a4c]

This is to be expected when constructing a CANTalon with a device ID that is not present on
CAN bus in C++/Java. These are caused by asserts in the programming APl meant to signal
the developer that some expected CAN frame was not detected on the bus. Although it should
not impact other CAN nodes, it can be a distraction since it may mask other unrelated errors
reported in the driver station that are no longer visible.

Cross The Road Electronics Page 57 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.8. Driver Station log says -44087 occurred at NetComm...

Team # 217 ogs .. G r

TeleOperated Elapsed Time 1:03.8
Autonomous D 13.44V 087 occurred at NetComm_CAN_Receive.vi:5470005<APPEND>

=& PC Battery
PCCPU% B

Practice Communications mm

Test ode mm

Joysticks mm
Wwindow = [

Enable Teleoperated

Team Station Red1 7 Enabled

This is to be expected when referencing a “CAN Talon SRX” with a device ID that is not present
on CAN bus in LabVIEW. Although it should not impact other CAN nodes, it can be a
distraction since it may mask other unrelated errors reported in the driver station that are no
longer visible.

16.9. Why are there multiple ways to get the same sensor data?

GetEncoder() versus GetSensor()?

The API that fetches latest values for Encoder (Quadrature) and Analog-In (potentiometer or a
continuous analog sensor) reflect the pure decoded values sent over CAN bus (every 100ms).
They are available all the time, regardless of which control mode is applied or whether the
sensor type has been selected for soft limits and closed-loop mode. These signals are ideal for
instrumenting/logging/plotting sensor values to confirm the sensors are wired and functional.
Additionally they can be read at the same time (you can wire a potentiometer AND a quadrature
encoder and get both position and velocities programmatically). Furthermore the robot
application could actually use this method to process sensor information directly. If the 100ms
update rate is not sufficient, it can be overridden to a faster rate.

For the purpose of using soft limits and/or closed-loop modes, the robot application must select
which sensor to use for position/velocity. Selecting a sensor will cause the Talon SRX to mux
the appropriate sensor to the closed-loop logic, the soft limit logic, to the “Sensor Position” and
“Sensor Velocity” signals (update 20ms). These signals also can be inverted using the
"Reverse Feedback Sensor" signal in order to keep the sensor in phase with the motor.

Since “Sensor Position” and “Sensory Velocity” are updated faster (20ms) they can also be
used for processing sensor information instead of overriding the frame rates.

16.10. So there are two types of ramp rate?

There are two ways to “ramp” or acceleration cap the motor drive.

The “Voltage Ramp” APl in all three languages are functional, and takes effect regardless of
which mode the Talon SRX is in (duty cycle, slave, Position, Speed).

The selected Motor Control Profile also has a “Closed-Loop Ramp Rate” which can be used to
apply a unique ramp rate only when the motor controller is closed-looping and the Profile Slot
has been selected.

By having two options, a robot can have mode specific ramping with minimal effort in the robot
controller. For example, a team may require a “weak” ramp to slightly dampen motor drive to

Cross The Road Electronics Page 58 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

prevent driver error (flipping the robot), or to reduce impulse stress (snapping chains). But
when closed-looping, an additional ramp might be necessary to smooth the closed-loop
maneuver.

16.11. Why are there two feedback “analog” device types: Analog Encoder
and Analog Potentiometer?

When Analog Potentiometer is selected, the 10 bit Analog to Digital Converter (ADC) converts
the O to 3.3V signal present on the analog input pin to a value between 0 and 1023.

When Analog Encoder is selected, the same conversion takes place, but rollovers to and from
the min/max voltage are tracked so that analog sensors can be used as relative sensors. If an
overflow is detected (1023 => 0), the position signal transitions (1023 => 1024). Likewise an
underflow (0=>1023) is interpreted as (0 => -1). This is useful when using an analog encoder
and allowing it to exceed the max turn count. This way an analog encoder can be used as a
continuous relative sensor.

16.12. After changing the mode in C++/Java, motor drive no longer works.
Self-Test says “No Drive” mode?

Refresh Self-Test

The salf test completed successfully.
TALOHMN is enabled.

Mode : 15 : Mo Drive

Appliad Throtte : O

Brake during neutral

CloseloopError : O
ProfileSlotSelact : O

Selected Device for Close Loop : 0 : Quad Encoder
Pn=: 1

After calling a Talon SRX object’s changeMode () function, the Talon SRX mode is set to
disabled until the set () /set () routine is called. This is to ensure the robot application has a
chance to pass a new target set point before the new control mode is applied. Any call to
changeMode () should be immediately followed with a set () so that motor drive is not set to
neutral.

This ensures that when the robot application changes a Talon’s mode, it also specifies the

throttle/set-point/or slave ID for the new mode to ensure all the necessary information is set for
the mode switch.

Cross The Road Electronics Page 59 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.13. All CAN devices have red LEDs. Recommended Preliminary checks

for CAN bus.
Some basic checks for the CAN harness are...
Turn off robot, measure resistance between CANH and CANL.
= ~60 ohm is typical (120ohm at each end of the cable).
= ~120 ohm suggests that one end is missing termination resistor. Terminate the end
using PDP jumper or explicit 120 ohm resistor.
= ~0 ohm suggests a short between CANH and CANL.
= INF or large resistances, missing termination resistor at each side.

More information can be found in Talon SRX User’s Guide.

Check the roboRIO’s Web-based Configuration to see if any devices appear, and ensure
there are no Talon SRX’s sharing the same device ID.

16.14. Driver Station reports “MotorSafetyHelper.cpp: A timeout...”, motor
drive no longer works. roboRIO Web-based Configuration says “No Drive”

mode? Driver Station reports error -44075?
This can happen after enabling Motor Safety Enable and not calling set () /set () often enough
to meet the expiration timeout.

Team # 217
TeleOperated ElapsedTime 0:00.0 cam Logs eal]) g

Autonomous D 12.49Y Emoronline 117 of Mof
- at/h
C -

Practice —% PCBattery om
rect PCCPU% B at/
window =1 [
Teleoperated
TeamStation Red1 &7 Disabled

Another symptom of this is seeing “No Drive” has the control mode in the Self-Test.

Refresh Self-Test

The salf test completed succassfully.
TALOM is enabled.

Applied Throttle : O

Braks during neutral

CloseloopError : 0
FrofileSlotSelect : 0

Selected Device for Close Loop : 0 : Quad Encoder
Pns: 0

When the safety timeout expires in LabVIEW, the error message will be different...

TeleOperated Elapsed Time 0:00.0 T_EHIE# &3 Y

Autonomous D occurred at The connected to PWM 1 of the DIO Module in Controller 1in the VI path:
Practice —& PCBattery _ alo ed Control Encoder.vi

Test PCCPUY% mm

Window =1 [

Teleoperated
Team Station Red1l Disabled

See section 19 for more information.

Cross The Road Electronics Page 60 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.15. Motor drive stutters, misbehaves? Intermittent enable/disable?
Check the CAN Utilization to ensure it’s not near 100%. An abnormally high percent may be a
symptom of “common ID” Talons. This also can occur when selecting custom frame rates that
are too fast.

Check the roboRIO’s Web-based Configuration to confirm all expected Talons are populated
and are enabled according to the Self-Test.

Check the “Under Vbat” sticky flag in the Self-Test. This will rule out power/voltage related
issues.

If the issues occur only during rapid changes in direction and magnitude, the power
cables/crimps may not be efficient enough to deliver power during the stall-period when a
loaded motor changes direction. This can be confirmed if increasing the voltage ramp rate
removes/fixes this symptom.

Be sure to check the Driver Station Logs for packet loss since that can cause intermittent robot
disables.

If the Driver Station has 3™ party software that uses network communication, or if the Driver
Station

When using the DAP-1522 (or similar radio) be sure to use latest stable firmware. For example,
rev-A DAP1522s (with production ship firmware) will not reliably enable the robot. Additionally
consult FRC rules and documentation for which hardware rev is legal for competition and how to
properly setup the radio.

Cross The Road Electronics Page 61 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.16. What to expect when devices are disconnected in roboRIO’s Web-

based Configuration. Failed Self-Test?
Depending what version of software is released, a discovered Talon will display loss of
connection one of two ways.

The Firmware Version may report (Device is not responding).

-

Talon SRX Settings
Talon SRX (Devica ID 2}

Nama 'Tzlon SRX (Davice ID 2)
Talon SRX
' Talon SRX (Device 1D 10) Device 1D 2
] Light Device LED
Talon SRX Softur a icat
Talon SRX (Device ID 8) oftuzre Status unning Application.
Hardware Revision 1.4
Talon SRX Manufacture Date Nov 2, 2014
Talon SRX (Devica ID 11)
’ Bootloader Revision 2.6
Talon SRX vendor Cross The Road Electronics
Talon SRX (Device ID 17) ’ Talon 57X
Talon SRX Firmuare Revision I 1.1 (Device is not responding, this is stale) I
Talon SRX (Device ID 7) Status Treent

’Tﬁlon SRX

Talnn SRY (Neviea TN 15)

Alternatively the tree element will gray out to indicate loss of communication....
' Talon SRX (\DEvi(e D 12)‘ -

Settings

Talon SRX (Mot Present)
h Talon SRX (Device ID 10) Name Talon SRX (Device 1D 2)
Talon SRX (Not Present) Device ID —Iz
Talon SRX (Device ID 8)] Light Device LED
Software Status Runnin: ication.
Talon SRX (Mot Present) g Appl
Talon SRX (Device ID &) Hardware Revision 14
Manufacture Date Nov 2, 2014
Talon SRX (Not Present) .
Talon SRX (Device ID 2} Bootloader Revision 26
wendor Cross The Road Electronics
NI robaRIO Madel Talon SRX
RIOO
Firmware Revision 11
ASRLL:INSTR Status Mat Present
Acel e, mmeTE

The roboRIO internals rechecks the CAN bus once every five seconds so when
connecting/disconnecting Talons to/from the bus, be sure to wait at least five seconds and
refresh the webpage to detect changes in connection state.

Doing a Self-Test when the Talon SRX is not present on the CAN bus will report a red ‘X’ in the
top left portion of the Self-Test report. Depending on what robot controller image is release you
may see the stale values of all signals when the red “X” is present.

e The self test failad.
TALON IS MOT EMABLED! If robot is enabled maybe the ID is wrong?
Mode : 0 : Throttle (duty cycle)
Applied Throttle = O
Coast during neutral

CloseloopErrer : 0
ProfileSlotSelect @ O

Salected Device for Close Loop : 0 : Quad Encoder
Pos: 0

Cross The Road Electronics Page 62 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.17. When | programmatically change the “Normally Open” vs “Normally

Closed” state of a limit switch, the Talon SRX blinks orange momentarily.
Changing the “Normally Open” versus “Normally Closed” setting of a motor controller will cause
it to disable motor drive momentarily. If the goal is to enable/disable the limit switch feature, this
can be done without affecting motor drive using the Limit Switch overrides.

Typically the only time a Talon SRX NO/NC setting won’t match what is specified
programmatically will be when a new Talon SRX is installed for the first time. Once the
programming API has changed the setting once, the Talon SRX’s persistent limit switch mode
will match what the programming API requests, and therefore will not impact robot performance.

16.18. How do | get the raw ADC value (or voltage) on the Analog Input pin?
The bottom ten bits of Analog-In Position is equal to the converted ADC value. The range of [0,
1023] scales to [0V, 3.3V]. Additionally, if “Analog Potentiometer” is selected as the Feedback

Device, the signal “Sensor Position” will exactly equal the bottom ten bits of Analog-In Position.

16.19. Recommendation for using relative sensors.
When using relative sensors for closed-loop control, it's always good practice to design in a way
to re-zero your robot. Regardless of how/where relative sensors are connected (robot controller
10, Talon SRX, etc...), there is always the potential for sensors to “walk” or “drift” due to...
-Mechanical slip issues
-Skipped gear teeth in chain
-Intermittent electrical connections (harness gets damaged in middle of a match)
-Power cycle robot when armatures are not in their “home” position.
-Remote resets of robot controller when armatures are not in their “home” position.

A common solution to this is to design a way in the gamepad logic to force your robot into a
“manual mode” where the driver/arm operator can manually servo motors to a home position
and press a button (or button combination) to re-zero (or set to the “home” position values) all
involved sensors.

Teams that do this already can continue to use this method with Talon SRX since there is are
set functions to modify “Sensor Position”.

16.20. Does anything get reset or lost after firmware updates?

The device ID, limit switch startup settings, brake startup settings, Motor Control Profile
Parameters, and sticky flags are all unaffected by the act of field-upgrading. If a particular
firmware release has a “back-breaking” change, it will be explicitly documented.

16.21. Analog Position seems to be stuck around ~100 units?

When the analog input is left unconnected, it will hover around 100 units. If an analog sensor
has been wired, most likely it's connected to the wrong pin. Recheck wiring against the Talon
SRX User’s Guide.

Cross The Road Electronics Page 63 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.22. Limit switch behavior doesn’t match expected settings.

First check the Startup Settings in the roboRIO Web-based Configuration to determine that the
“Normally Open”/ “Normally Closed” settings are correct. They can be changed
programmatically and in the web page so it's worth confirming. Here we see both directions use
NO limit switches...

Motor Controller Startup Settings

Brake Mode | coast -
Forward Limit-Switch | Mormally Opened |
Reverse Limit-Switch l Mormally Opened -]

Then press the “Self-Test” button to check...

-The open/closed state of the limit switch input pin on the Talon SRX.

-If enable/disable state of the limit-switch logic is overridden programmatically.
-Check the fault and sticky faults to see if limit fault conditions are detected.

Refrash Salf-Test

0 The salf test completed successfully.
TALON IS NOT ENABLED! If robot is enabled maybe the ID is wrong?
Mode : O : Throttle (duty cycle)
Applied Throttle : O
Coast during neutral

ClosaloopError : 250
ProfileSlotSelect : O

Selected Device for Close Loop : 2 : Analog Encoder
Pos: 728
Velocity: -1

Quad Encoder
Pos: -14735
Velacity : O

A Pin: 1

B Pin:0

Idx Pin: 1

Idx rise edges : 9

Analog Input

ADC : 728

Pas (with owerflows) = 728
Velacity : -1

Fwd Limit Switch is Closed
Rev Limit Switch is Opean

Fwd Limit Switch is forced OFF
Rev Limit Switch is forced OFF

(Fault) (Now) _ (Sticky)
Fwed Limit Switch 1 0 o-l
| Rev Limit Switch : 0 0
Fved Soft Limit : a i}
Rewv Soft Limit : o a
Under Vbat : o [}
Qver Temp a (1]

In this example the Fwd. Limit Switch fault is not set despite the Fwd. Limit Switch being closed.
This is because the Limit Switch logic forced OFF, because the feature is disable
programmatically. As a result closing the forward limit switch will not disable motor drive.

Cross The Road Electronics Page 64 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.23. How fast can | control just ONE Talon SRX?

The fastest control frame rate that can be specified is 1ms. That means that the average period
at which the throttle/set point can be updates is 1ms. This will increase bus utilization by
approximately 15%, which is acceptable if the number of Talon SRXs is few. Always check the
CAN bus performance metrics in the Driver Station when doing this.

16.24. Expected symptoms when there is excessive signal reflection.
If the CAN bus harness has excessive signal reflection due to improper wiring or missing
termination resistors, the following symptoms may be seen...

-Driver Station will show Rx and Tx CAN errors intermittently (see Section 15), particularly with
higher bus utilization.

-CAN bus utilization will be higher than normal. This is because CAN devices transmit error
frames in response to detecting improper frames. This is helpful if you are in the habit of
checking your bus utilization every once in a while and knowing what is typical for your robot.
See Section 15 for more details.

-The LED of every CAN device on the bus will blink red intermittently during normal use (the
same symptom as Section 16.4). Both common-ID Talons and excessive signal reflection can
cause error frames to appear, which trigger every CTRE CAN device to intermittently blink red
during normal use.

One reliable way to observe this LED behavior is to deliberately leave a couple common-ID
Talon SRXs on your CAN Bus. Then, power up your robot and leave it disabled. All Talon
SRXs will rail-road orange (healthy CAN bus and disabled). Now watch any particular Talon
SRX for a minute or so. It will blink red intermittently as the two (or more) common-ID Talon
SRXs inevitably disrupt each other’s frame transmission.

-Measured DC resistance between CANH and CANL (when robot is unpowered) should be
approximately 60 Q. If this is not the case then recheck the CAN wiring and termination
resistors (see Talon SRX User’s Guide).

16.25. LabVIEW application reads incorrect Sensor Position. Sensor

Position jumps to zero or is missing counts.

This is a common symptom if the LabVIEW application is calling the Motor Enable VI
periodically. This VI has the side-effect of modifying the Sensor Position every time it’s invoked.
Additionally wiring the current Sensor Position to this signal also will prevent proper signal
decoding since the RIO will send stale positions to the Talon SRX, overwriting valid signal
changes in the Talon. See Section 13.1.1 for more information.

Additionally, check that the correct Feedback Device is selected (Section 7). Remember that
the Feedback Device Select is sent only when the robot is enabled. Since there is only one
control frame that contains all control signals, this ensures Talon has the correct sensor
selected when Talon is enabled (Section 20.6).

Cross The Road Electronics Page 65 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.26. CAN devices do not appear in the roboRIO Web-based config.
Normally devices appear under the “CAN Interface” tree node...

roboRIO-217 : System Configuration

| ISE\arrh Refresh
-
g roboRIO)
Ld(| roboRIO-217 System Settings
Host boRIO-217
. @ CAN Interface nams | robe
| cand 1P Addrass 10.2.17.2 (Ethernat)
0.0.0.0 {Ethernet)
FOP
| PDP (Devics 1D 0) DNS Name roboRIO-217.local
Vendor Mational Instruments
Jﬂ Talon SRX
| rightRears Model roboRIO
Serial Mumber 030498A1
Talon SRX Firmware Revision 2.1.0f2
Talon SRX [Device 1D 13)
Operating System NI Linux Real-Time ARMv7-A 32.2.35-rt52-2.0.0f0
Ml i cn

...however if the roboRIO is not correctly wired to the CAN Bus, then the tree node will have no
elements listed underneath..

roboRIO-217 : System Configuration

| ISE\ar‘cﬁ Refresh
g roboRIO
L‘e\ | roboRIO-217 System Settings
= CAMN Interface Hostname | roboRIC-217
| cand 1P Addrass 10.2.17.2 (Ethernat)
0.0.0.0 {Etharnet)
NI roboRIO
| RIDO DME Name roboRIC-217.local
Wendor Mational Instruments

ASD 4« TRETD

...in which case double-check the CAN bus wiring and termination strategy. See the Talon SRX
User’s Guide for more information on wiring Talon SRXs. Also see the “FRC Screen steps”
online documentation for more information on wiring the other CAN devices in the control
system. Additionally, check the status LEDs of the CAN devices. Generally, red LED states
reflect an unhealthy CAN connection, which will help diagnose wiring issues.

16.27. After a power boot of the robot, and then enabling, occasionally a
single CAN actuator does not enable (blinks orange as though it is
disabled). Issue corrects itself after pressing “Restart Robot Code” in

Driver Station and re-enabling robot.

See section 21.18. If using C++, an alternative solution is to simply update to WPILib 2015-02-
24,

Cross The Road Electronics Page 66 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

16.28. Occasionally when a firmware update is attempted we get an
immediate error. Talon SRX is blinking green/orange. However when we
re-imaged the RIO the issue went away?

If you are a C++ team using a WPLIb version prior to 2015-02-24, then you may be susceptible
to Functional Limitation 21.18. A secondary symptom of the roboRIO startup issue is that the
first attempt at field-updating a CAN device will cause this error.

There was a problem updating the firmware for this device.

W Talon SRX (Device ID 12) : CTRE_DI_DidMotGetDhcp

A second attempt at field-updating it will cause this error.

There was a problem updating the firmware for this device.

W Talon SRX (Device ID 12) : CTRE_DI_EculsNotPresent

Although the root-cause is a startup condition in the roboRIO, there are many solutions to this...

16.28.1. The simplest solution is to update your C++ WPILib to 2015-02-24 or newer. This
resolves the root-cause, the startup race that creates Functional Limitation 21.18. Rebuild,
redeploy, and reboot the roboRIO, then reattempt flashing CAN devices.

16.28.2. Another alternative is to “undeploy” your C++ built FRCUserProgram application.
Deleting/renaming the file (inside /home/lvuser using SSH or FTP) is sufficient. Then reboot
roboRIO and re-attempt flashing CAN devices. Re-deploy your robot application when you've
finished re-flashing your CAN devices.

16.28.3. A third alternative is to re-image the roboRIO, however this is an excessive solution
and is not recommended. The reason this has worked for teams previously is because it has
the side effect of removing the deployed application, just like 16.28.2. However reimaging the
RIO takes considerably more time (several minutes) whereas the two previous solutions are
much faster and lower risk.

Cross The Road Electronics Page 67 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

17. Units and Signal Definitions

This section describes the units used for various signals.

17.1. (Quadrature) Encoder Position

When measuring the position of a Quadrature Encoder, the position is measured in 4X encoder
edges. For example, if a US Digital Encoder with a 360 cycles per revolution (CPR) will count
1440 units per rotation when read using “Encoder Position” or “Sensor Position”.

The velocity units of a Quadrature Encoder is the change in Encoder Position per Tveimea
(Tvemeas=0.1sec). For example, if a US Digital Encoder (CPR=360) spins at 20 rotations per
second, this will result in a velocity of 2880 (28800 position units per second).

17.2. Analog Potentiometer
When measuring the position of a 3.3V Analog Potentiometer, the position is measured as a 10
bit ADC value. A value of 1023 corresponds to 3.3V. A value of O corresponds to 0.0V.

The velocity units of a 3.3V Analog Potentiometer is the change in Analog Position per Tveimea
(Tvemeas=0.1sec). For example if an Analog Potentiometer transitions from 0V to 3.3V (1023
units) in one second, the Analog Velocity will be 102.

17.3. Analog Encoder, “Analog-In Position”

Like 3.3V Analog Potentiometers, the 10 bit ADC is used to scale [0 V, 3.3 V] => [0, 1023].
However when the Analog Encoder “wraps around” from 1023 to 0, the Analog Position will
continue to 1024. In other words, the sensor is treated as “continuous”.

The velocity units of a 3.3V Analog Encoder is the change in Analog Position per 100ms
(Tveiveas=0.1sec). For example if an Analog Encoder transitions from OV to 3.3V (1023 units) in
one second, the Analog Velocity will be 102.

17.4. EncRise (a.k.a. Rising Counter)

Every rising edge seen on the Quadrature A pin is counted as a unit.

The velocity units is the change in RisingEdge Count per Tveivea (Tveimeas=0.15€C).
This mode is useful for single direction sensors (tachometer / gear-tooth sensor).

17.5. Duty-Cycle (Throttle)

The Talon SRX uses 10bit resolution for the output duty cycle. This means a -1023 represents
full reverse, +1023 represents full forward, and O represents neutral.

The programming APl made available in LabVIEW and C++/Java performs the scaling into
percent, so the duty cycle resolution is not necessary for programming purposes. However
when evaluating PIDF gain values, it is helpful to understand how the calculated output of the
closed-loop is interpreted.

Cross The Road Electronics Page 68 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

17.6. (Voltage) Ramp Rate

The Talon SRX natively represents Ramp Rate as the change in throttle per Tramprate
(Tramprae=10mMs). Throttle is represented as a 10bit signed value (1023 is full forward, -1023 is
full reverse). For example, if the robot application requires motor drive ramping from 0% to
100% to take one second of ramping, the result Ramp Rate would be ([1023 — 0] / 1000ms X
Tramprate) OF 10 units.

The programming APl made available in LabVIEW and C++/Java performs the scaling into
appropriate units (Voltage or percent).

17.7. (Closed-Loop) Ramp Rate

The Closed Loop Ramp Rate that can be specified in the selected Motor Control Profile is
measured in change in output throttle (from PIDF loop) per T ciosedLoopramprate (T ClosedLoopRampRate
=1ms). For example, if the selected Motor Control Profile requires motor drive ramping from 0%
to 100% to take one second of ramping, the result Ramp Rate would be ([1023 — 0] / 1000ms X
Tramprate) OF 1 unit.

The programming APl made available in LabVIEW and C++/Java performs the scaling into
appropriate units (Voltage or percent).

However when inspecting/setting the Closed-Loop Ramp Rate in the roboRIO webpage, the
units will be shown in output throttle per TciosedLooprampRate.

17.8. Integral Zone (I Zone)

The motor control profile contains Integral Zone (I Zone), which (when nonzero), is the
maximum error where Integral Accumulation will occur during a closed-loop Mode. If the
Closed-loop error is outside of the | Zone, “| Accum” is automatically cleared. This can prevent
total instability due to integral windup, particularly when tweaking gains.

The units are in the same units as the selected feedback device (Quadrature Encoder, Analog
Potentiometer, Analog Encoder, and EncRise).

17.9. Integral Accumulator (I Accum)
The accumulated sum of Closed-Loop Error. It is accumulated in line with Closed-Loop math
every 1ms.

17.10. Reverse Feedback Sensor

Boolean signal for inverting the selected Feedback Sensor’s position and velocity. This is the
preferred method for keeping the motor and sensor in phase for limit switch, soft limit, and
closed-loop mode.

17.11. Reverse Closed-Loop Output
Boolean signal for inverting the output of the closed-loop PIDF controller. This signal is also
used during slave-follower mode to drive slave Talon in the opposite direction of the master.

Cross The Road Electronics Page 69 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

17.12. Closed-Loop Error
Calculated as the difference between target set point and the actual Sensor Position/Velocity.

The units are matched to Analog-In or Encoder depending on which “Feedback Device” and
control mode (position vs. speed) is selected.

17.13. Closed-Loop gains

P gain is specified in throttle per error unit. For example, a value of 102 is ~9.97% (which is
102/1023) throttle per 1 unit of Closed-Loop Error.

| gain is specified in throttle per integrated error. For example, a value of 10 equates to ~0.97%
for each accumulated error (Integral Accumulator). Integral accumulation is done every 1ms.

D gain is specified in throttle per derivative error. For example a value of 102 equates to ~9.97%
(which is 102/1023) per change of Sensor Position/Velocity unit per 1ms.

F gain is multiplied directly by the set point passed into the programming APl made available in
LabVIEW and C++/Java. This allows the robot to feed-forward using the target set-point.

Cross The Road Electronics Page 70 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

18. How is the closed-loop implemented?

The closed-loop logic is the same regardless of which feedback sensor or closed-loop mode is
selected. The verbatim implementation in the Talon firmware is displayed below.
This includes...
- The logic for PIDF style closed-loop.
- Inverting the output of the closed-loop if enabled in API.
- Capping the output to positive values only IF using a single direction feedback sensor.
- Closed- Loop Ramp Rate, ramping the output if enabled.

Note: The PID Mux Unsigned and PID Mux_Sign routines are merely multiply functions.

/**

* 1lms process for PIDF closed-loop.

* @param pid ptr to pid object

* @param pos signed integral position (or velocity when in velocity mode) .

* The target pos/velocity is ramped into the target member from caller's 'in'.
* If the CloseLoopRamp in the selected Motor Controller Profile is zero then

* there is no ramping applied. (throttle units per ms)

* PIDF is traditional, unsigned coefficients for P,i,D, signed for F.

* Target pos/velocity is feed forward.

*

* Izone gives the abilty to autoclear the integral sum if error is wound up.

* @param revMotDuringCloseLoopEn nonzero to reverse PID output direction.
* @param oneDirOnly when using positive only sensor, keep the closed-loop from outputing negative throttle.
*/
void PID CalclMs(pid t * pid, int32_t pos,uint8_t revMotDuringCloseLoopEn, uint8_t oneDirOnly)
{
/* grab selected slot */
MotorControlProfile t * slot = MotControlProf GetSlot();
/* calc error : err = target - pos*/
int32_t err = pid->target - pos;
pid->err = err;
/*abs error */
int32_t absErr = err;
if(err < 0)

absErr = -absErr;
/* integrate error */
if (0 == pid->notFirst) {

/* first pass since reset/init */
pid->iAccum = 0;
/* also tare the before ramp throt */
pid->out = BDC_GetThrot(); /* the save the current ramp */
telse if ((!slot->IZone) || (absErr < slot->IZone)) {
/* izone is not used OR absErr is within iZone */
pid->iAccum += err;
telse{
pid->iAccum = 0;
}
/* dErr/dt */
if (pid->notFirst) {
/* calc dErr */
pid->dErr = (err - pid->prevErr);
telse{
/* clear dErr */
pid->dErr = 0;
}
/* P gain X the distance away from where we want */
pid->outBeforRmp = PID_Mux_Unsigned(err, slot->P);
if (pid->iAccum && slot->I){
/* our accumulated error times I gain. If you want the robot to creep up then pass a nonzero Igain */
pid->outBeforRmp += PID Mux_Unsigned(pid->iAccum, slot->I);
}
/* derivative gain, if you want to react to sharp changes in error (smooth things out). */
pid->outBeforRmp += PID_Mux Unsigned(pid->dErr, slot->D);
/* feedforward on the set point */
pid->outBeforRmp += PID Mux_Signed(pid->target, slot->F);
/* arm for next pass */
{
pid->prevErr = err; /* save the prev error for D */
pid->notFirst = 1; /* already serviced first pass */
}

/* if we are using one-direction sensor, only allow throttle in one dir.

Cross The Road Electronics Page 71 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

If it's the wrong direction, use revMotDuringCloseLoopEn to flip it */
if (oneDirOnly) {
if (pid->outBeforRmp < 0)
pid->outBeforRmp = 0;
}
/* honor the direction flip from control */
if (revMotDuringCloseLoopEn)

pid->outBeforRmp = -pid->outBeforRmp;
/* honor closelooprampratem, ramp out towards outBeforRmp */
1f(0 != slot->CloseLoopRampRate) {

if (pid->outBeforRmp >= pid->out) {
/* we want to increase our throt */
int32_t deltaUp = pid->outBeforRmp - pid->out;
if (deltaUp > slot->CloseLoopRampRate)
deltaUp = slot->CloseLoopRampRate;
pid->out += deltaUp;
telse{
/* we want to decrease our throt */
int32_t deltabn = pid->out - pid->outBeforRmp;
if (deltabn > slot->CloseLoopRampRate)
deltaDn = slot->CloseLoopRampRate;
pid->out -= deltaDn;

telse{
pid->out = pid->outBeforRmp;

Cross The Road Electronics Page 72 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

19. Motor Safety Helper

The Motor Safety feature works in a similar manner as the other motor controllers. The goal is
to set an expiration time to a given motor controller, such that, if the set () /set () routine is not
called within the expiration time, the motor controller will disable. Additionally the DS will report
the error and the roboRIO Web-based Configuration Self-Test will report kDisabled as the
mode. As a result, the set routine must be called periodically for sustained motor drive when
motor safety is enabled.

One example where this feature is useful is when laying breakpoints with the debugger while
the robot is enabled and moving. Ideally when a breakpoint lands, its safest to disable motor
drive while the developer performs source-level debugging.

19.1. Best practices
Be sure to test that the time between enabling Motor Safety features, and the first set () /set ()
call is small enough to not risk accidently timing out. Calling set () /set () immediately after
enabling the feature can be used to ensure transitioning into the enabled modes doesn’t
intermittently cause a timeout.

Even if tripping the motor-safety expiration time is not an expected condition, it's best to re-
enable the motors somewhere in the source so that the timeouts can be reset easily, for
example in Autonlinit()/Teleoplnit(). That way normal robot functionality can be safely resumed
after a motor controller expires (usually during source-level debugging).

Additionally if source-level debugging is not required (for example during a competition or if
logging-style debugging is preferred) the motor-safety enable can be turned off.

Cross The Road Electronics Page 73 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

19.2. C++ example
SetSafeyEnabled () can be used to turn on this feature. setExpiration () can be used to set
the expiration time. The default expiration time is typically 100ms.

11= class Robot: public IterativeRobot

12 {

12 private:

14 CANTalon *_talons[2@]; //!< Create a bunch of Talons

15 Joystick _joy;

16 static const int masterId = 2; //!< Which Talon device ID to make the master.

17

12 public:

192 Robot() : _joy(®@)

28

21 /* create a bunch of talons, say 28 of them. Doesn't matter if 28 are actually wired or not. */
22 for(int i=0;i<208;++1){

23 _talens[i] = new CANTalon(i);

24 /* make every Talan follow master ID */

25 _talons[i]->SetControlMode(CANSpeedController: :kFollower);

26 _talens[i]->Set(masterId);

27 1

28 }

L2902 void TeleopInit()

30 {

312 /* just in case we already safety-timed out previously, when we re-enter teleop we
32 need to re-Enable the motor controller, otherwise it will stay timed out. */
33 _talons[masterId]-»EnableControl();

34

35 /* turn en safety enable features */

36 _talons[masterId]-»SetSafetyEnabled(true);

37 _talons[masterId]->SetExpiration(@8.188);

338 _talons[masterId]-»5et(@);

39 ¥

LAes void TeleopPeriodic()

a1 {

42 /* grab some gamepad values */

43 double dThrot = -1* joy.Get¥();

X double bBtnl = _joy.GetRawButton(1);

45

16 /* make the master Percent Wbuys. you can do this once or every loop, it doesn't hurt anything */
47 _talons[masterId]->SetControlMode (CANSpeedController: : kPercentVbus);

48

49 if(bBtnl){

se /* button is pressed, don't update motor to negative test safety features */
51 }else{

52 /* button not pressed, keeping updating ~28ms per set */

53 _talens[masterId]->Set(dThrot);

54 1

55 ¥

56 };

Cross The Road Electronics Page 74 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

19.3. Java example
setSafeyEnabled () can be used to turn on this feature. setExpiration () can be used to set
the expiration time. The default expiration time is typically 100ms.

18 public class Robot extends IterativeRobot {I

11

12 CANTalon [] _talons = new CANTalon[2@8]; //!< Create a bunch of Talons

13 Joystick joy = new Joystick(e);

14 int masterId = 2; //!< Which Talon device ID to make the master.

15

16 public Robot(){

17 /* create a bunch of talons, say 2@ of them. Doesn't matter if 28 are actually wired or not. */
18 for(int i=0;1<20;++1i)q{

19 _talens[i] = new CANTalon(i);

26 /* make every Talon follow master ID */

21 _talens[i].changeControelMode(ControlMode. Follower);

22 _talons[i].set(masterId);

23 }

24 1

25

262 public wvoid teleopInit(){

27 /* just in case we already safety-timed out previcusly, when we re-enter telegp we
28 need to re-Enable the motor controller, otherwise it will stay timed out. */
29 _talons[masterId].enableControl();

38

31 /* turn on safety enable features */

32 _talons[masterId].setSafetyEnabled(true);

33 _talons[masterId].setExpiration(@.1ea);

34 _talons[masterId].set(@);

35 3

36

372 /**

38 * This function is called periodically during operator contrel

39 *

A= public wvoid teleopPericdic() {

41 /* grab some gamepad values */

42 double dThrot = -1% joy.getY();

43 boolean bBtnl = _joy.getRawButton(l);

14

45 /* make the master Percent Ybhus. you can do this once or every loop, it doesn’'t hurt anything */
A6 _talons[masterId].changeControlMode (ControlMode. PercentVbus);

47

48 if(bBtnl){

49 /* button is pressed, don't update motor to negative test safety features */
58 relse{

51 /* button not pressed, keeping updating ~28ms per set */

52 _talens[masterId].set(dThrot);

53 1

54 3

55

56

57

T3

19.4. LabVIEW Example

The Motor SAFETY CONFIG VI can be used to turn on this feature. Select “Enable” for the
mode and specify the timeout in seconds.

Cross The Road Electronics Page 75 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

19.5. RobotDrive
The examples in this section refer to the CANTalon objects directly. However higher level class
types such as robotDrive can have their own motor safety objects as well. Although
CANTalon safety features default off, the higher level drive objects tend to default safety enable
to on. If you are still witnessing disabled motor drive behavior and Motor Safety Driver Station
Log Messages (see Section 16.14) then you may need to call setSafetyEnabled (false) (Or
similar routines/VI) on RobotDrive objects as well. Keep in mind that disabling safety enable
means that motor drive is allowed to continue if a source-level breakpoint halts program flow.
Take the necessary precautions to debug the robot safely or alternatively only enable motor
safety features when performing source level debugging.

Cross The Road Electronics Page 76 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

20. Going deeper - How does the framing work?

The Talon periodically transmits four status frames with sensor data at the given periods. This
ensures that certain signals are always available with a deterministic update rate. This also
keeps bus utilization stable.

Similarly the control frame sent to the Talon SRX is periodic and contains almost all the
information necessary for all control modes.

Although the frame rates are default to ensure stable CAN bandwidth, there may be available
API to override the frame rates for performance reasons. If this is done, be sure to check the
CAN performance metrics to ensure custom settings don’t exceed the available CAN bandwidth,
see “CAN bus Utilization and Performance metrics”.

20.1. General Status

The General Status frame has a default period of 10ms, and provides...

-Closed Loop Error: the closed-loop target minus actual position/velocity.

-Throttle: The current 10bit motor output duty cycle (-1023 full reverse to +1023 full forward).
-Forward Limit Switch Pin State

-Reverse Limit Switch Pin State

-Fault bits

-Applied Control Mode

... These signals are accessible in the various get functions in the programming API.

20.2. Feedback Status

The Feedback Status frame has a default period of 20ms, and provides...

-Sensor Position: Position of the selected sensor

-Sensor Velocity: Velocity of the selected sensor

-Motor Current

-Sticky Faults

-Brake Neutral State

-Motor Control Profile Select

... These signals are accessible in the various get functions in the programming API.

20.3. Quadrature Encoder Status

The Quadrature Encoder Status frame has a default period of 100ms.

-Encoder Position: Position of the quadrature sensor

-Encoder Velocity: Velocity of the selected sensor

-Number of rising edges counted on the Index Pin.

-Quad A pin state.

-Quad B pin state.

-Quad Index pin state.

... These signals are accessible in the various get functions in the programming API.

Cross The Road Electronics Page 77 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

The quadrature decoder is always engaged, whether the feedback device is selected or not,
and whether a quadrature encoder is actually wired or not. This means that the Quadrature
Encoder signals are always available in programming API regardless of how the Talon is used.
The 100ms update rate is sufficient for logging, instrumentation and debugging. If a faster
update rate is required the robot application can select the appropriate sensor and leverage the
Sensor Position and Sensor Velocity.

20.4. Analog Input / Temperature / Battery Voltage Status

The Analog/Temp/BattV status frame has a default period of 100ms.

-Analog Position: Position of the selected sensor

-Analog Velocity: Velocity of the selected sensor

-Temperature

-Battery Voltage

... These signals are accessible in the various get functions in the programming API.

The Analog to Digital Convertor is always engaged, whether the feedback device is selected or
not, and whether an analog sensor is actually wired or not. This means that the Analog In
signals are always available in programming API regardless of how the Talon is used. The
100ms update rate is sufficient for logging, instrumentation and debugging. If a faster update
rate is required the robot application can select the appropriate sensor and leverage the Sensor
Position and Sensor Velocity.

20.5. Modifying Status Frame Rates
The frame rates of these signals may be maodifiable through programming API.

20.5.1. C++
The setstatusFrameMs () function can be used to modify the frame rate period of a particular
Status Frame. Use the StatusFrameRate... enumerations to specify which frame period to
modify.

|enum StatusFrameRate stateFrame,int periu:udl"-ﬂ5|
customMotor . SetStatusErameRateMs (CANTalen s :statul
o StatusFrameRateAnalogTempVbat
o StatusFrameRateFeedback

o StatusFrameRateGeneral

o StatusFrameRateCQuadEncoder
(3 StatusFrameRate

Cross The Road Electronics Page 78 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

20.5.2. Java
The setStatusFrameMs () function can be used to modify the frame rate period of a particular

Status Frame. Use the StatusFrameRate... enumerations to specify which frame period to
modify.

[StatusFrameRate stateFrame, int period Msl
customMotorDescrip.setStatusFrameRateMs (GtatusFrameRate,), beriostI);|

o AnalogTempVbat : CANTalon.StatusFrameRate - edu.wpi.firs
¥ Feedback : CANTalon.StatusFrameRate - eduwpifirstowpilib
¥ General : CANTalon.StatusFrameRate - eduwpifirstwpilibj.C
¥ QuadEncoder : CANTalon.StatusFrameRate - eduwpifirstawg

20.5.3. LabVIEW Example
Although there is no explicit VI for modifying the Status Frame Rates, modifying the frame rates
can be accomplished with the generic CAN TALON SETPRM.

Talon SRX Reference
CAN.Device Number

[TALON_Status_1_General | [94]

Feroama] [

CAM.Device Mumber

TALON_Status_2_Feedback |[95]
TALOH

Period (ms) .

CAM.Device Number
[TALON Status 3.Enc | [o6] _Yﬁfs‘n
Period (ms) —

CAM.Device Number
[TALON Status_4_AinTernpVbat | |

EETFRHM]
Period (ms) @J

The wpI CANTalonSRX SetParameter.vi can be drag and dropped from where it resides.

Home Share View
Ij % cut ” x @ m [Mew item = D B open - HH selectall
[W] Copy path 3 —;‘ansy access @Edit 50 Select none
Copy Paste _ Move Copy Delete Rename Mew Properties &
[2] Paste shortcut to- to- - folder - ¥R History nEIn\rert selection
Clipboard Organize Mew Open Select
@ - 4 h v ThisPC » OS(C:) » Program Files (x86) » MNational Instruments » LabVIEW 2014 » vilib » RockRobotics » WPl » CAN » TalonSRX
. Documents " Mame Date modified Type Size
| Pictures WPI_CAMNTalonSRX_Send.vi 12/17/201412:43 ... LabVIEW Instrume... 22KB
| WPI_CANTalonSRX_SetParameter.vi 12/17/201412:43 ... LabVIEW Instrume... 19 KB
3 Homegroup WPI_CAMTalonSRX_SetPID.wvi 12/17/201412:43 ... LabVIEW Instrume... 30KB
e WDl CAMTalanERY SetRafarance i 12/17/3014 12.42 1 s hWIEW nctrime IR KR
28items 1item selected 18.6 KB

Cross The Road Electronics Page 79 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

20.6. Control Frame

The Talon is primarily controlled by one periodic control frame. The default period of this frame
is 10ms. The control frame provides the Talon...

-which Motor Control Profile Slot to use.

-which control mode (position, velocity, duty cycle, slave mode)

-which feedback sensor to use

-if the feedback sensor should be reversed

-if the closed-loop output should be reversed

-the target/set point or duty cycle or which Talon to follow

-the (voltage) ramp rate

-brake neutral mode override if specified

-limit switch overrides if specified

... These signals are accessible in the various set functions in the programming API.

20.7. Modifying the Control Frame Rate

Depending on the initial release of programming API, the frame rates of these signals may be
modified through programming API. The CANTalon constructor contains a second parameter to
specify control frame period in milliseconds.

Cross The Road Electronics Page 80 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21. Functional Limitations

Functional Limitations describe behavior that deviates than what is documented. Feature
additions and improvements are always possible thanks to the field-upgrade features of the
Talon SRX.

21.1. Firmware 1.1-1.4: Voltage Compensation Mode is not supported.
Feature was not prioritized for FRC 2015 season.

21.2. Firmware 1.1-1.4: Current Closed-Loop Mode is not supported.
Feature was not prioritized for FRC 2015 season.

21.3. Firmware 1.1-1.4: EncFalling Feedback device not supported.
Feature was not prioritized for FRC 2015 season. Firmware does support EncRising Mode
(a.k.a. Rising Edge Counter).

21.4. Firmware 1.1-1.4: ConfigMaxOutputVoltage () not supported.
Feature was not prioritized for FRC 2015 season.

21.5. Firmware 1.1-1.4: ConfigFaultTime () not needed

Firmware only disables drive for limit faults and soft limits (which are time invariant). Motor drive
is not disabled due to current, temp, or battery voltage, therefore there is no fault time.

21.6. Firmware 1.1: Changes in Limit Switch “Normally Open” vs “Normally

Closed” may require power cycle during a specific circumstance.

In the specific situation where programming API overrides a limit switch enable (to true or false),
then changes the NO/NC mode of the same limit switch using programming API, the setting will
not take effect until the motor controller is power cycled, or until the limit switch is no longer
overridden.

The “first” time a new Talon SRX’s NO/NC setting is changed programmatically, power cycle the
Talon so the setting takes effect. After the initial power cycle, new NO/NC setting will be loaded
correctly and match what the robot controller is requesting, therefore Talon will honor the new
NO/NC state from then on.

If not setting NO/NC state programmatically, then no symptoms are observed that deviate from
reference manual. Changing the NO/NC state in the the roboRIO Web-based Configuration
works as expected.

This is fixed in 1.4.

21.7. LabVIEW: EncRising Feedback mode not selectable.
Release software of LabVIEW does not provide option to select EncRising Mode.

Cross The Road Electronics Page 81 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.8. LabVIEW/C++/Java API: ConfigEncoderCodesPerRev () IS not

supported.
Talon does not configure units. Instead the quadrature units are always in 4X mode.

21.9. LabVIEW/C++/Java API: ConfigPotentiometerTurns () IS not

supported.
Talon does not configure units. Instead the 3.3V ADC is 10 bit, therefore 0 => 3.3V scales to 0
=> 1023 units.

21.10. Java: Once a Limit Switch is overridden, they can’t be un-overridden.

This does not cause any observable symptoms, just an inconsistency between C++ and Java
API.

21.11. LabVIEW: Modifying status frame rate is not available.
See Section 20.5.3 for an example workaround as well as Functional Limitation Section 21.14.

21.12. LabVIEW: Modifying control frame rate is not available.
This will not be available in the initial season release.

21.13. Firmware 1.1: After selecting “Analog Encoder”, “Sensor Position”

does not reliably decode when sensor wraps around (3.3V => QV).
Sensor Position may not travel above 1023 or below 0, despite selecting “Analog Encoder” and
spinning the sensor in one direction in a continuous fashion.

This is fixed in 1.4.

Cross The Road Electronics Page 82 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.14. LabVIEW: Certain SRX VI's running in parallel can affect the GET PID

VI signals.
Avoid using the following Vls in “parallel” to reading the signals provided by GET p1D.

Affected Vis:
RESET INTEGRAL ACCUM,

CONFIG LIMIT SWITCH,
CONFIG SOFT LIMIT,
SET PID,

CAN TALON SETPRM,

For example, use a state variable to control whether GET PID is used, or the other mentioned
Vs are used per periodic loop. Otherwise the GET PID signals may erroneously return zero.

Example Workaround

Every even loop, grab PIDF values

Param 5lot

TALOH

GET
FID

Every loop transition
between '0' and '1'

al—r

Cross The Road Electronics Page 83 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.15. C++: There is no method to reverse the output of a slave Talon SRX.

The initial release of WPILIB C++ does not have a method for setting the “Reverse Closed-Loop
output” signal. This signal is useful for reversing the output of a slave Talon SRX, ensuring it
drives in the opposite direction of its master Talon SRX.

Additionally when using a single-direction sensor in EncRising mode (Rising Counter) this is the
preferred method for keeping motor and sensor in phase since “Reverse Feedback Sensor”
must be false for single-direction sensors.

The following example can be used to work around this limitation by using the core class
CanTalonSrx to directly reverse the output signal. Notice the additional include for
“ctre/CanTalonSRX.h” and the use of SetRevMotDuringCloseLoopEn () t0 accomplish
reversing the output.

Although using canTalonSrx is generally not recommended (CANTalon is the top-level class
designed for team-use) this functional limitation is an example where using the lower level class
is beneficial.

Example Workaround - Inverting a Slave Talon SRX

|€] Robot.cpp &2

#include "WPILib.h™

#include "ctre/CanTalenSRX.h™ /* use this to grab the underlying core class */
class Robot: public IterativeRobot

(ST S

5 public:
6 Joystick * joy@; /* the first gamepad */
7 CANTalon * tall; /* pointer to a CANTalon */
8 CanTalonSRX * tal2; /* pointer to a CanTalonSRX - the low level class */
9 Robot()
11 tall = new CANTalon(1}; /* master Talon device id 1 */
12 tal2 = new CanTalonSRX(2); lave Talon device id 2 */
13 joy@ = new Joystick(®); /* first gamepad */
15 /* just use the CanTalonSRX class since WPILIB is missing the reverseOuput() fung */
16 tal2-»SetModeSelect(CanTalonSRX: : kMode_SlaveFollower); /% Talon2 wi ¢« another Talon */
17 tal2->SetDemand(1); /* Talon2 w w Talonl */
18 tal2->SetRevMotDuringCloseloopEn(l); /* ClosedLoopOut/SlaveOut reverse set to "true™ */
19 }
2

void TeleopPeriodic()

{ .
/* create vars */
double leftYaxis;
/* get left axis v */
leftYaxis = joy@-»GetY(Joystick::kLeftHand);
J* Left ¥ => Talon 1 */
tall->Set(leftyaxis);

I

START_ROBOT_CLASS{Robot);

Note: This example also demonstrates using heap class pointers instead of regular member
variables in the interest of covering different methods for allocating objects. Teams may use
non-pointer variables if desired.

Cross The Road Electronics Page 84 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.16. Firmware <0.36: Limit Switch Faults and Soft Limit Faults may cause

Talon SRX to disable for approximately two seconds during the “first time”.
In the specific situation where a particular limit switch or particular soft limit fault trips for the
“first time” when using a Talon SRX with pre-FRC2015-kickoff firmware, the Talon SRX may
blink orange for a two second period of time, during which it behaves as though it’s disabled.
This can only happen when a Talon SRX is initially out-of-the-box or when a Talon SRX’s sticky
faults have been cleared (using the roboRIO web-based configuration or through programming
API). The cause is due to the way that firmware earlier than 0.36 saves the sticky faults in
persistent memory.

Since teams using CAN are required to update to at least 1.1, this functional limitation will not
occur.

Also Talon SRXs used with PWM have no method for clearing sticky faults, so this symptom will
only appear once and then never occur again. Additionally PWM-use Talons can easily be

firmware updated using the method described in Talon SRX User’s Guide Section 1.3.4.2.

Fixed in 0.36.

Cross The Road Electronics Page 85 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.17. Firmware 1.4: When setting the “Sensor Position” of an analog

encoder, multiple set commands are required.

In the specific situation of setting the “Sensor Position” when the selected feedback device is an
analog encoder, the robot application will have to send two set commands to reliably change the
sensor position. Additionally there must be at least 9 ms between the two set commands.

The symptom occurs when a sensor position is changed by a large enough value to cause a
false detection of an analog encoder wraparound. By re-setting the sensor position to the same
new value a second time after the false wrap around is detected, the analog encoder position
can be reliably modified.

In C++/Java this can be done by calling the setPosition ()/setPosition () function twice with
the same parameter, and ensuring there is at least 9 ms between the calls.

In LabVIEW this can be accomplished by using state (shift register) to count the number times
to consecutively set the Sensor Position. The following example demonstrates clearing the
sensor position when the “Clear Position” front panel button is pressed.

State variahle|

Shift registor to hold state
[us ¥
ol S" — — Save the decremented value for next loop. If Clear Position 1=
numClearSensors [When it's time to clear, re-set our state to '2' so we set lwas pressed, then we will re-set to a value of 2"
position to zero twice. Otherwise just pass it through.

If state is nonzero, Set position as described in Section
13 in Software Reference Manual

M True 't
¢ R TCubee el

Sensor Positiol

i state is greater than zero subtract one| i

Clear Positio

M True Vt
[F] -~ » A Clear Position

Cross The Road Electronics Page 86 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.18. roboRIO power up: roboRIO startup software may not be ready for
Robot Application. As aresult, certain resources (like CAN actuators) may

not enable on teleOp-Enabled after a roboRIO power boot.

This is a specific race condition that causes the RIO’s start up processes to boot in a different
order then intended. The symptom a team would see is: we power cycled the robot, enabled,
and some of our CAN devices (Talon SRX for example) does not enabled (LEDs blink orange).
Although the circumstances are intermittent, the workaround to guarantee the Robot Application
is robust is simple. In the Disable Loop, “set” one of the following signals periodically to ensure
the roboRIO background process is well-aware of what CAN actuators the Robot Application
intends to use.

Setting any of these signals in the disabled loop will meet the workaround requirements. Also
setting these will have no effect on the Talon itself since these signals are not sent over CAN

bus until the robot is enabled. The signals that can be used for this workaround are...
Brake Mode during Neutral,

Throttle or Closed-Loop set point,
Control Mode,

Limit Switch Enable Overrides,
Feedback Device Select,

(Voltage) Ramp Rate,

Reverse Feedback Sensor,

Reverse Closed-Loop Output,
Profile Slot Select,

These signals exist in the periodic control frame. As such, setting them will not block or hold up
program execution.

In this C++ workaround example, we redundantly set the brake mode to its default setting. The
brake mode already defaults to kNeutralMode Jumper so the actual behavior of the Talon
hasn’t changed, and no additional CAN traffic is generated since the control frame is unsolicited
and periodic.

In this example any brake mode will work and the new signal value does not have to be
different than the original signal value.

void DisabledPeriodic()

periodically "touch” the CANTalons to ensure they

* Any set() methods that are wired to the normal-mod

For example, re-affirming the default neutral mode is sufficient. .
driveBaseFrontLeftSteer->ConfigNeutralMode(CANTalon: :kNeutraltlode_Jumper);
driveBaseFrontRightSteer->ConfigNeutralMode(CANTalon: :kNeutraltlode Jumper);
driveBaseRearLeftSteer->ConfigNeutralMode(CANTalon: : kNeutraltode Jumper);
driveBaseRearRightSteer->ConfigNeutralMode(CANTalon: :kNeutraltlode_Jumper);
stackerLiftFrontRight->ConfigNeutralMode(CANTalon: : kNeutraltode_Jumper);
stackerLiftFrontLeft->ConfigNeutralMode(CANTalon: : kNeutraltode_Jumper);
stackerDart->ConfigNeutralMode(CANTalon: : kNeutraltflode Jumper);
grabberExtension->ConfigNeutralMode(CANTalon: : kNeutraltlode_Jumper);

Cross The Road Electronics Page 87 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015

21.19. roboRIO power up: User should manually refresh the web-based

configuration after rebooting roboRIO.

It is recommended to manually refresh the web browser if the roboRIO has been reset or power
cycled. This ensures that the web browser and roboRIO are synchronized well. Otherwise
device icons may not match the device type in the web-based config.

Cross The Road Electronics Page 88 2/26/2015

217-8080

TALON SRX Software Reference Manual 2/26/2015

22. CRF Firmware Revision Information

CRF | Date Description

Rev

1.4 20-Jan-2015 | Functional Limitation 21.6 fixed.
Functional Limitation 21.13 fixed.
Analog Encoder/Potentiometer Velocity uses a rolling window average to reduce noise.
Analog Encoder/Potentiometer Position averaged to reduce noise.

1.1 26-Dec-2014 | Initial Release for 2015 FRC Season

Cross The Road Electronics Page 89 2/26/2015

217-8080 TALON SRX Software Reference Manual 2/26/2015
23. Document Revision Information
Rev Date Description
15 26-Feb-2015 -Added Section 16.27
-Added Section 16.28
1.4 17-Feb-2015 -Added screenshot of wrong CRF in Section 2.3.3.
-Section 13.1.1 added.
-Section 16.25 added.
-Section 16.26 added.
-Section 19.5 added.
-Section 21.18 added.
-Section 21.19 added.
1.3 1-Feb-2015 -Section 6.4 added.
-Section 12.2.3 added.
-Section 16.24 added.
-Section 21.16 added.
-Section 21.17 added.
1.2 23-Jan-2015 -Section 21.15 added. Reversing a slave Talon in C++.
-Section 3.6 Added for changing Talon SRX mode.
1.1 20-Jan-2015 -Section 22 moved to Section 23.
-New Section 22 added for CRF Firmware.
-Updates relating to CRF 1.4.
-Section 21.14 Added. Workaround for GET PID VI.
-Section 20.5.3 Added. Example for LabVIEW status
frame modification.
-Section 2.5 Added. Custom Device Names.
-Section 13, Clarifying statement added for CRF 1.4.
1.0 26-Dec-2014 -Initial Release for 2015 FRC Season
Cross The Road Electronics Page 90 2/26/2015

	1. CAN bus Device Basics
	2. roboRIO Web-based Configuration: Firmware and diagnostics
	2.1. Device ID ranges
	2.2. Common ID Talons
	2.3. Firmware Field-upgrade a Talon SRX
	2.3.1. When I update firmware, I get “You do not have permissions…”
	2.3.2. What if Firmware Field-upgrade is interrupted?
	2.3.3. Other Field-upgrade Failure Modes
	2.3.4. Where to get CRF files?

	2.4. Self-Test
	2.4.1. Clearing Sticky Faults

	2.5. Custom Names
	2.5.1. Re-default custom name

	3. Creating a Talon Object (and basic drive)
	3.1. Programming API and Device ID
	3.2. New Classes/Virtual Instruments
	3.3. LabVIEW
	3.4. C++
	3.5. Java
	3.6 Changing Mode
	3.6.1. LabVIEW
	3.6.2. C++
	3.6.3. Java
	3.6.4. Check Control Mode with Self-Test

	4. Limit Switch and Neutral Brake Mode
	4.1. Default Settings
	4.2. roboRIO Web-based Configuration: Limit Switch and Brake
	4.3. Overriding Brake and Limit Switch with API
	4.3.1. LabVIEW
	4.3.2. C++
	4.3.3. Java

	4.4. Changing limit switch mode between “Normally Open” or “Normally Closed”
	4.4.1. LabVIEW
	4.4.2. C++
	4.4.3. Java

	5. Getting Status and Signals
	5.1. LabVIEW
	5.2. C++
	5.3. Java

	6. Setting the Ramp Rate
	6.1. LabVIEW
	6.2. C++
	6.3. Java
	6.4. What is the slowest ramp possible?

	7. Selecting a Feedback Device
	7.1. LabVIEW
	7.2. C++
	7.3. Java
	7.4. Reversing sensor direction, best practices.

	8. Soft Limits
	8.1. LabVIEW
	8.2. C++
	8.3. Java

	9. Follower Mode
	9.1. LabVIEW
	9.2. C++
	9.3. Java

	10. Closed-Loop Modes
	11. Motor Control Profile Parameters
	11.1. Persistent storage and Reset/Startup behavior
	11.2. Inspecting Signals

	12. Position/Velocity Closed-Loop Example
	12.1. Setting Motor Control Profile Parameters
	12.1.1. LabVIEW
	12.1.2. C++
	12.1.3. Java

	12.2. Clearing Integral Accumulator (I Accum)
	12.2.1. LabVIEW
	12.2.2. C++/Java
	12.2.3. Is Integral Accum cleared any other time?

	13. Setting Sensor Position
	13.1. LabVIEW
	13.1.1. Motor Enable

	13.2. C++
	13.3. Java

	14. Fault Flags
	14.1. LabVIEW
	14.2. C++
	14.3. Java

	15. CAN bus Utilization/Error metrics
	15.1. How many Talons can we use?

	16. Troubleshooting Tips and Common Questions
	16.1. When I press the B/C CAL button, the brake LED does not change, neutral behavior does not change.
	16.2. Changing certain settings in Disabled Loop doesn’t take effect until the robot is enabled.
	16.3. The robot is TeleOperated/Autonomous enabled, but the Talon SRX continues to blink orange (disabled).
	16.4. When I attach/power a particular Talon SRX to CAN bus, The LEDs on every Talon SRX occasionally blink red. Motor drive seems normal.
	16.5. If I have a slave Talon SRX following a master Talon SRX, and the master Talon SRX is disconnected/unpowered, what will the slave Talon SRX do?
	16.6. Is there any harm in creating a software Talon SRX for a device ID that’s not on the CAN bus? Will removing a Talon SRX from the CAN bus adversely affect other CAN devices?
	16.7. Driver Station log says Error on line XXX of CANTalon.cpp
	16.8. Driver Station log says -44087 occurred at NetComm...
	16.9. Why are there multiple ways to get the same sensor data? GetEncoder() versus GetSensor()?
	16.10. So there are two types of ramp rate?
	16.11. Why are there two feedback “analog” device types: Analog Encoder and Analog Potentiometer?
	16.12. After changing the mode in C++/Java, motor drive no longer works. Self-Test says “No Drive” mode?
	16.13. All CAN devices have red LEDs. Recommended Preliminary checks for CAN bus.
	16.14. Driver Station reports “MotorSafetyHelper.cpp: A timeout…”, motor drive no longer works. roboRIO Web-based Configuration says “No Drive” mode? Driver Station reports error -44075?
	16.15. Motor drive stutters, misbehaves? Intermittent enable/disable?
	16.16. What to expect when devices are disconnected in roboRIO’s Web-based Configuration. Failed Self-Test?
	16.17. When I programmatically change the “Normally Open” vs “Normally Closed” state of a limit switch, the Talon SRX blinks orange momentarily.
	16.18. How do I get the raw ADC value (or voltage) on the Analog Input pin?
	16.19. Recommendation for using relative sensors.
	16.20. Does anything get reset or lost after firmware updates?
	16.21. Analog Position seems to be stuck around ~100 units?
	16.22. Limit switch behavior doesn’t match expected settings.
	16.23. How fast can I control just ONE Talon SRX?
	16.24. Expected symptoms when there is excessive signal reflection.
	16.25. LabVIEW application reads incorrect Sensor Position. Sensor Position jumps to zero or is missing counts.
	16.26. CAN devices do not appear in the roboRIO Web-based config.
	16.27. After a power boot of the robot, and then enabling, occasionally a single CAN actuator does not enable (blinks orange as though it is disabled). Issue corrects itself after pressing “Restart Robot Code” in Driver Station and re-enabling robot.
	16.28. Occasionally when a firmware update is attempted we get an immediate error. Talon SRX is blinking green/orange. However when we re-imaged the RIO the issue went away?

	17. Units and Signal Definitions
	17.1. (Quadrature) Encoder Position
	17.2. Analog Potentiometer
	17.3. Analog Encoder, “Analog-In Position”
	17.4. EncRise (a.k.a. Rising Counter)
	17.5. Duty-Cycle (Throttle)
	17.6. (Voltage) Ramp Rate
	17.7. (Closed-Loop) Ramp Rate
	17.8. Integral Zone (I Zone)
	17.9. Integral Accumulator (I Accum)
	17.10. Reverse Feedback Sensor
	17.11. Reverse Closed-Loop Output
	17.12. Closed-Loop Error
	17.13. Closed-Loop gains

	18. How is the closed-loop implemented?
	19. Motor Safety Helper
	19.1. Best practices
	19.2. C++ example
	19.3. Java example
	19.4. LabVIEW Example
	19.5. RobotDrive

	20. Going deeper - How does the framing work?
	20.1. General Status
	20.2. Feedback Status
	20.3. Quadrature Encoder Status
	20.4. Analog Input / Temperature / Battery Voltage Status
	20.5. Modifying Status Frame Rates
	20.5.1. C++
	20.5.2. Java
	20.5.3. LabVIEW Example

	20.6. Control Frame
	20.7. Modifying the Control Frame Rate

	21. Functional Limitations
	21.1. Firmware 1.1-1.4: Voltage Compensation Mode is not supported.
	21.2. Firmware 1.1-1.4: Current Closed-Loop Mode is not supported.
	21.3. Firmware 1.1-1.4: EncFalling Feedback device not supported.
	21.4. Firmware 1.1-1.4: ConfigMaxOutputVoltage() not supported.
	21.5. Firmware 1.1-1.4: ConfigFaultTime() not needed
	21.6. Firmware 1.1: Changes in Limit Switch “Normally Open” vs “Normally Closed” may require power cycle during a specific circumstance.
	21.7. LabVIEW: EncRising Feedback mode not selectable.
	21.8. LabVIEW/C++/Java API: ConfigEncoderCodesPerRev() is not supported.
	21.9. LabVIEW/C++/Java API: ConfigPotentiometerTurns() is not supported.
	21.10. Java: Once a Limit Switch is overridden, they can’t be un-overridden.
	21.11. LabVIEW: Modifying status frame rate is not available.
	21.12. LabVIEW: Modifying control frame rate is not available.
	21.13. Firmware 1.1: After selecting “Analog Encoder”, “Sensor Position” does not reliably decode when sensor wraps around (3.3V => 0V).
	21.14. LabVIEW: Certain SRX VI's running in parallel can affect the GET PID VI signals.
	21.15. C++: There is no method to reverse the output of a slave Talon SRX.
	21.16. Firmware <0.36: Limit Switch Faults and Soft Limit Faults may cause Talon SRX to disable for approximately two seconds during the “first time”.
	21.17. Firmware 1.4: When setting the “Sensor Position” of an analog encoder, multiple set commands are required.
	21.18. roboRIO power up: roboRIO startup software may not be ready for Robot Application. As a result, certain resources (like CAN actuators) may not enable on teleOp-Enabled after a roboRIO power boot.
	21.19. roboRIO power up: User should manually refresh the web-based configuration after rebooting roboRIO.

	22. CRF Firmware Revision Information
	23. Document Revision Information

