
217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 1 2/26/2015

TALON SRX Software Reference Manual

Rev 1.5

Cross The Road Electronics

www.crosstheroadelectronics.com

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 2 2/26/2015

Table of Contents
1. CAN bus Device Basics ... 8

2. roboRIO Web-based Configuration: Firmware and diagnostics .. 9

2.1. Device ID ranges... 9

2.2. Common ID Talons ..10

2.3. Firmware Field-upgrade a Talon SRX ..12

2.3.1. When I update firmware, I get “You do not have permissions…”14

2.3.2. What if Firmware Field-upgrade is interrupted? ..16

2.3.3. Other Field-upgrade Failure Modes ..17

2.3.4. Where to get CRF files? ...18

2.4. Self-Test ..19

2.4.1. Clearing Sticky Faults ..21

2.5. Custom Names ..22

2.5.1. Re-default custom name ..23

3. Creating a Talon Object (and basic drive) ...24

3.1. Programming API and Device ID ..24

3.2. New Classes/Virtual Instruments ..24

3.3. LabVIEW ..25

3.4. C++ ..26

3.5. Java ...26

3.6 Changing Mode ...27

3.6.1. LabVIEW ..27

3.6.2. C++ ..27

3.6.3. Java ...27

3.6.4. Check Control Mode with Self-Test ..28

4. Limit Switch and Neutral Brake Mode..29

4.1. Default Settings ..29

4.2. roboRIO Web-based Configuration: Limit Switch and Brake ..30

4.3. Overriding Brake and Limit Switch with API ..31

4.3.1. LabVIEW ..32

4.3.2. C++ ..32

4.3.3. Java ...32

4.4. Changing limit switch mode between “Normally Open” or “Normally Closed”33

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 3 2/26/2015

4.4.1. LabVIEW ..33

4.4.2. C++ ..33

4.4.3. Java ...33

5. Getting Status and Signals ..34

5.1. LabVIEW ..35

5.2. C++ ..36

5.3. Java ...37

6. Setting the Ramp Rate ..38

6.1. LabVIEW ..38

6.2. C++ ..38

6.3. Java ...38

6.4. What is the slowest ramp possible? ...38

7. Selecting a Feedback Device ..39

7.1. LabVIEW ..39

7.2. C++ ..39

7.3. Java ...40

7.4. Reversing sensor direction, best practices. ..41

8. Soft Limits ...42

8.1. LabVIEW ..42

8.2. C++ ..43

8.3. Java ...43

9. Follower Mode ..44

9.1. LabVIEW ..44

9.2. C++ ..44

9.3. Java ...44

10. Closed-Loop Modes ..45

11. Motor Control Profile Parameters ..45

11.1. Persistent storage and Reset/Startup behavior ..46

11.2. Inspecting Signals ..48

12. Position/Velocity Closed-Loop Example ..49

12.1. Setting Motor Control Profile Parameters ...49

12.1.1. LabVIEW ..49

12.1.2. C++ ..49

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 4 2/26/2015

12.1.3. Java ...49

12.2. Clearing Integral Accumulator (I Accum) ..50

12.2.1. LabVIEW ..50

12.2.2. C++/Java ..50

12.2.3. Is Integral Accum cleared any other time? ..50

13. Setting Sensor Position ...51

13.1. LabVIEW ..51

13.1.1. Motor Enable ..51

13.2. C++ ..51

13.3. Java ...51

14. Fault Flags ..52

14.1. LabVIEW ..52

14.2. C++ ..52

14.3. Java ...53

15. CAN bus Utilization/Error metrics ..54

15.1. How many Talons can we use? ..55

16. Troubleshooting Tips and Common Questions ..56

16.1. When I press the B/C CAL button, the brake LED does not change, neutral behavior does

not change. ...56

16.2. Changing certain settings in Disabled Loop doesn’t take effect until the robot is enabled. 56

16.3. The robot is TeleOperated/Autonomous enabled, but the Talon SRX continues to blink

orange (disabled). ...56

16.4. When I attach/power a particular Talon SRX to CAN bus, The LEDs on every Talon SRX

occasionally blink red. Motor drive seems normal. ...56

16.5. If I have a slave Talon SRX following a master Talon SRX, and the master Talon SRX is

disconnected/unpowered, what will the slave Talon SRX do? ...57

16.6. Is there any harm in creating a software Talon SRX for a device ID that’s not on the CAN

bus? Will removing a Talon SRX from the CAN bus adversely affect other CAN devices?57

16.7. Driver Station log says Error on line XXX of CANTalon.cpp ...57

16.8. Driver Station log says -44087 occurred at NetComm... ...58

16.9. Why are there multiple ways to get the same sensor data? GetEncoder() versus

GetSensor()? ..58

16.10. So there are two types of ramp rate? ...58

16.11. Why are there two feedback “analog” device types: Analog Encoder and Analog

Potentiometer?..59

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 5 2/26/2015

16.12. After changing the mode in C++/Java, motor drive no longer works. Self-Test says “No

Drive” mode? ..59

16.13. All CAN devices have red LEDs. Recommended Preliminary checks for CAN bus.60

16.14. Driver Station reports “MotorSafetyHelper.cpp: A timeout…”, motor drive no longer

works. roboRIO Web-based Configuration says “No Drive” mode? Driver Station reports error -

44075? ..60

16.15. Motor drive stutters, misbehaves? Intermittent enable/disable?61

16.16. What to expect when devices are disconnected in roboRIO’s Web-based Configuration.

Failed Self-Test? ...62

16.17. When I programmatically change the “Normally Open” vs “Normally Closed” state of a

limit switch, the Talon SRX blinks orange momentarily. ..63

16.18. How do I get the raw ADC value (or voltage) on the Analog Input pin?63

16.19. Recommendation for using relative sensors. ..63

16.20. Does anything get reset or lost after firmware updates? ...63

16.21. Analog Position seems to be stuck around ~100 units? ...63

16.22. Limit switch behavior doesn’t match expected settings. ..64

16.23. How fast can I control just ONE Talon SRX? ..65

16.24. Expected symptoms when there is excessive signal reflection.65

16.25. LabVIEW application reads incorrect Sensor Position. Sensor Position jumps to zero or

is missing counts. ..65

16.26. CAN devices do not appear in the roboRIO Web-based config.66

16.27. After a power boot of the robot, and then enabling, occasionally a single CAN actuator

does not enable (blinks orange as though it is disabled). Issue corrects itself after pressing

“Restart Robot Code” in Driver Station and re-enabling robot. ..66

16.28. Occasionally when a firmware update is attempted we get an immediate error. Talon

SRX is blinking green/orange. However when we re-imaged the RIO the issue went away? ...67

17. Units and Signal Definitions ..68

17.1. (Quadrature) Encoder Position ...68

17.2. Analog Potentiometer ...68

17.3. Analog Encoder, “Analog-In Position” ...68

17.4. EncRise (a.k.a. Rising Counter) ...68

17.5. Duty-Cycle (Throttle) ..68

17.6. (Voltage) Ramp Rate..69

17.7. (Closed-Loop) Ramp Rate ...69

17.8. Integral Zone (I Zone) ...69

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 6 2/26/2015

17.9. Integral Accumulator (I Accum) ..69

17.10. Reverse Feedback Sensor ...69

17.11. Reverse Closed-Loop Output ...69

17.12. Closed-Loop Error ..70

17.13. Closed-Loop gains ...70

18. How is the closed-loop implemented? ...71

19. Motor Safety Helper ..73

19.1. Best practices ..73

19.2. C++ example ..74

19.3. Java example ...75

19.4. LabVIEW Example ...75

19.5. RobotDrive ...76

20. Going deeper - How does the framing work? ..77

20.1. General Status ...77

20.2. Feedback Status ..77

20.3. Quadrature Encoder Status ..77

20.4. Analog Input / Temperature / Battery Voltage Status ..78

20.5. Modifying Status Frame Rates ...78

20.5.1. C++ ..78

20.5.2. Java ...79

20.5.3. LabVIEW Example ...79

20.6. Control Frame ..80

20.7. Modifying the Control Frame Rate ..80

21. Functional Limitations ...81

21.1. Firmware 1.1-1.4: Voltage Compensation Mode is not supported.81

21.2. Firmware 1.1-1.4: Current Closed-Loop Mode is not supported.81

21.3. Firmware 1.1-1.4: EncFalling Feedback device not supported. ..81

21.4. Firmware 1.1-1.4: ConfigMaxOutputVoltage() not supported.81

21.5. Firmware 1.1-1.4: ConfigFaultTime() not needed ...81

21.6. Firmware 1.1: Changes in Limit Switch “Normally Open” vs “Normally Closed” may require

power cycle during a specific circumstance. ..81

21.7. LabVIEW: EncRising Feedback mode not selectable. ..81

21.8. LabVIEW/C++/Java API: ConfigEncoderCodesPerRev() is not supported.82

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 7 2/26/2015

21.9. LabVIEW/C++/Java API: ConfigPotentiometerTurns() is not supported.82

21.10. Java: Once a Limit Switch is overridden, they can’t be un-overridden.82

21.11. LabVIEW: Modifying status frame rate is not available. ..82

21.12. LabVIEW: Modifying control frame rate is not available. ...82

21.13. Firmware 1.1: After selecting “Analog Encoder”, “Sensor Position” does not reliably

decode when sensor wraps around (3.3V => 0V). ...82

21.14. LabVIEW: Certain SRX VI's running in parallel can affect the GET PID VI signals.83

21.15. C++: There is no method to reverse the output of a slave Talon SRX.84

21.16. Firmware <0.36: Limit Switch Faults and Soft Limit Faults may cause Talon SRX to

disable for approximately two seconds during the “first time”. ...85

21.17. Firmware 1.4: When setting the “Sensor Position” of an analog encoder, multiple set

commands are required. ...86

21.18. roboRIO power up: roboRIO startup software may not be ready for Robot Application. As

a result, certain resources (like CAN actuators) may not enable on teleOp-Enabled after a

roboRIO power boot. ...87

21.19. roboRIO power up: User should manually refresh the web-based configuration after

rebooting roboRIO. ...88

22. CRF Firmware Revision Information ..89

23. Document Revision Information ..90

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 8 2/26/2015

1. CAN bus Device Basics
Talon SRX, when used with CAN bus, has similar functional requirements with other FRC

supported CAN devices. Specifically every Talon SRX requires a unique device ID for typical

FRC use (settings, control and status). The device ID is usually expressed as a number

between ‘0’ and ‘62’, allowing use for up to 63 Talon SRXs at once. This range does not

intercept with device IDs of other CAN device types. For example, there is no harm in having a

Pneumatics Control Module (PCM) and a Talon SRX both with device ID ‘0’. However having

two Talon SRXs with device ID ‘0’ will be problematic.

Talon SRXs are field upgradable, and the firmware shipped with your Talon SRX will predate

the “latest and greatest” tested firmware intended for FRC use. Firmware update can be done

easily using the FRC 2015 roboRIO Web-based Configuration.

Talon SRX provides two pairs of twisted CANH (yellow) and CANL (green) allowing for daisy

chaining. Unlike previous seasons, the CAN termination resistors are built into the FRC robot

controller (roboRIO) and in the Power Distribution Panel (PDP) assuming the PDP’s termination

jumper is in the ON position.

More information on wiring and hardware requirements can be found in the Talon SRX User’s

Guide.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 9 2/26/2015

2. roboRIO Web-based Configuration: Firmware and

diagnostics
A new diagnostic feature in the 2015 FRC Season is the roboRIO’s Web-based Configuration

and Monitoring page. This provides diagnostic information on all discovered CAN devices,

including Talon SRXs. Talon SRXs can also be field-upgraded using this interface. This feature

is accessible by entering the mDNS name of your robot in a web browser, typically “roborio-

XXXX.local” where XXXX is the team number (no leading zeros for three digit team numbers).

2.1. Device ID ranges

A Talon SRX can have a device ID from 0 to 62. 63 is reserved for broadcast.

If you select an invalid ID you will get an immediate prompt.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 10 2/26/2015

2.2. Common ID Talons

During initial setup (and when making changes to your robot), there may be occasions where

the CAN bus contains multiple running Talon SRXs with the same device ID. “Common ID”

Talon SRXs are to be avoided since they prevent reliable communication and prevents your

robot application from being able to distinguish one Talon SRX from another. However the

roboRIO’s Web-based Configuration and Talon SRX firmware is designed to be tolerant of this

problem condition to a degree.

In the event there are “common ID” Talons, they will reveal themselves as a single tree element

(see image below). In this example, there is only one “Talon SRX (Device ID 0)” graphical

element on the left, however the software status shows that there are three detected Talon

SRXs with that device ID. If the number of “common ID” Talon SRXs is small (typically five or

less) you will still be able to firmware update, modify settings, and change the device ID. This

makes solving device ID contentions possible without having to isolate/disconnect “common ID”

Talon SRXs.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 11 2/26/2015

When “common ID” Talon SRXs are present, correct this condition by changing the device ID to

a “free” number, (one not already in use) before doing anything else. Then manually refresh the

browser. This allows the web page to re-populate the left tree view with a new device ID.

Since the web page allows control of one Talon SRX at a time, you may need to determine

which “common ID” Talon SRX you are modifying. Checking the “Light Device LED” and

pressing “Save” can be used to identify which physical Talon SRX is selected, and therefore

which one will be modified. This will cause the selected Talon SRX to blink its LEDs uniquely

(fast orange blink) for easy identification. In the unlikely event the device is in boot-loader

(orange/green LED), it will still respond to this by increasing the blink rate of the orange/green

pattern. The “Light Device LED” will uncheck itself after pressing “Save”.

Tip : Since the default device ID of an “out of the box” Talon SRX is device ID ‘0’, when you

setup your robot for the first time, start assigning device IDs at ’1’. That way you can, at any

time, add another default Talon to your bus and easily identify it.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 12 2/26/2015

2.3. Firmware Field-upgrade a Talon SRX

Talon SRX uses a file format call CRF. To firmware flash a Talon SRX, navigate to the

following page and select it in the left tree view.

To get the latest firmware files see Section 2.3.4. Where to get CRF files?

Press “Update Firmware”.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 13 2/26/2015

Select the firmware file (*.crf) to flash.

You will be prompted again, press “Begin Update”.

A progress bar will appear and finish with the following prompt. Total time to field-upgrade a

Talon SRX is approximately ten seconds. The progress bar will fill quickly, then pause briefly at

the near end, this is expected.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 14 2/26/2015

2.3.1. When I update firmware, I get “You do not have permissions…”

If you get the following error…

...then you have to log into the web interface using the username “admin”.

The user name is “admin” and the password is blank “”. Don’t enter any keys for password.

Additionally you can modify permissions to allow field upgrade without being asked for login

every single time. If security isn’t a concern then modify the permissions so that “anyone” can

access “FirmwareUpdate” features.

Click on the key/lock icon in the left icon list.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 15 2/26/2015

Then click on the “Permissions” tab. Select “FirmwareUpdate”, then press “Add” button.

Select everyone, then OK.

Click “Save” to save changes.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 16 2/26/2015

2.3.2. What if Firmware Field-upgrade is interrupted?

Since ten seconds is plenty of time for power or CAN bus to be disconnected, it is always

possible for a field-update to be interrupted. An error code will be reported if the firmware field-

update is interrupted or fails. Additionally the Software Status will report “Bootloader” and

Firmware Revision will be 255.255 (blank).

If a Talon SRX has no firmware, its boot-loader will take over and blink green/yellow on the

device’s corresponding LED. It will also keep its device ID, so the roboRIO can still be used to

change the device ID or (re)flash a new application firmware (crf). This means you can

reattempt field-upgrade using the same web interface. There is no need for any sort of recovery

steps, nor is it necessary to isolate no-firmware Talon SRXs.

Example capture of disconnecting the CAN bus in the middle of a firmware-upgrade…

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 17 2/26/2015

2.3.3. Other Field-upgrade Failure Modes

Here’s an example error when trying to flash the wrong CRF into the wrong product.

The device will harmlessly stay in boot-loader, ready to be (re)flashed again.

Here’s what to expect if your CRF file is corrupted (different errors depending on where the file

is corrupted). The device will harmlessly stay in boot-loader, ready to be (re)flashed again. Re-

downloading the CRF firmware file is recommended if this is occurring persistently.

Here’s what to expect if you flash the wrong product’s CRF. For example if you try to flash the

CRF for the Power Distribution Panel (PDP) into a Talon SRX, you will get an error prompt.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 18 2/26/2015

2.3.4. Where to get CRF files?

The FRC Software installer will create a directory with various firmware files/tools for many

control system components. Typically the directory path is “C:\Users\Public\Documents\FRC”.

When the path is entered into a browser, the browser may fix-up the path into

“C:\Users\Public\Public Documents\FRC”.

In this directory are the initial release firmware CRF files for all CTRE CAN bus devices,

including the Talon SRX.

Additionally newer updates may be provided online at www.crosstheroadelectronics.com and

www.vex.com.

The latest firmware to be used at time of writing is version 1.1 (or newer).

http://www.crosstheroadelectronics.com/
http://www.vex.com/

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 19 2/26/2015

2.4. Self-Test

Pressing Self-Test will display data captured from CAN bus at the time of press. This can

include fault states, sensor inputs, output states, measured battery voltage, etc…

At the bottom of the Self-Test results, the build time of the library that implements web-based

CAN features is also present.

Here’s an example of pressing “Self-Test” with Talon SRX. Be sure to check if Talon SRX is

ENABLED or DISABLED. If Talon SRX is DISABLED then either the robot is disabled or the

robot application has not yet created a Talon SRX object (see Section 3. Creating a Talon SRX

Object (and basic drive)).

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 20 2/26/2015

After enabling the robot and repressing “Self-Test” we see the Talon SRX is enabled.

Additionally we see there is a sticky fault asserted for low battery voltage.

Sticky faults persist across power cycles for identifying intermittent problems after they occur.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 21 2/26/2015

2.4.1. Clearing Sticky Faults

After double clicking Self-Test in a rapid fashion we see our fault gets cleared.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 22 2/26/2015

2.5. Custom Names

Another feature made available by the Web-based Configuration is the ability to rename Talon

SRXs with custom string descriptions. A Talon SRX’s custom name is saved persistently inside

the Talon. To modify the default name highlight the contents of the “Name” text entry.

…then replace with a custom text description and press “Save”.

The new description will appear in the left tree view.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 23 2/26/2015

2.5.1. Re-default custom name

To re-default the custom name, clear the “Name” text entry and press “Save”.

Left tree view will update with a temporary name until the “Refresh” button is pressed.

After pressing “Refresh” the default name will appear.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 24 2/26/2015

3. Creating a Talon Object (and basic drive)

3.1. Programming API and Device ID

Regardless of what language you use on the FRC control system (LabVIEW/C++/Java), the

method for specifying which Talon SRX you are programmatically controlling is the device ID.

Although the roboRIO Web-based Configuration is tolerant of “common ID” Talon SRXs to a

point, the robot programming API will not enable/control “common ID” Talons reliably. For the

robot to function properly, there CANNOT BE “COMMON ID” Talon SRXs. See Section 2.2.

Common ID Talons for more information.

3.2. New Classes/Virtual Instruments

C++/Java now contains a new class CANTalon (.h/.cpp/.java).

LabVIEW contains three new motor types for the FRC 2015 season: Talon SRX, Victor SP,

CAN Talon SRX. When using Talon SRX on CAN bus, select the CAN Talon SRX. The other

two modes are for PWM use. Additionally new VIs are available in the CAN Talon SRX palette.

After selecting CAN Talon SRX, the new VIs are visible...

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 25 2/26/2015

3.3. LabVIEW

Creating a “bare-bones” Talon SRX object is similar to previously supported motor controllers.

Start by creating a WPI_MotorControlOpen.vi object (left) and a

WPI_MotorControlRefNum.vi object (right).

These are accessible in the actuator palette (same VIs as previous seasons). Just like with

other motor controllers, the WPI_MotorControlOpen.vi has a dropdown to select the motor

controller type.

To begin with basic control, select “CAN Talon SRX”. The text underneath “Motor” will then

change to ““OPEN CAN TALON”. Then create two constants for the “Device Number” and

“Control Mode” inputs. The control mode will default to “Percent VBus” and “0” for the Device

ID. Enter the appropriate Device ID that was selected in the roboRIO Web-based Configuration.

Also similarly to other motor controllers, you may register a custom string reference using

WPI_MotorControlRefNum.vi to reference the motor controller by description in other block

diagrams. In this example we use “Custom Motor Description”.

Setting the output value of the Talon SRX is done similarly to other motor controllers.

In this example we directly control the motor output with a Joystick axis.

When using a closed-loop mode, the Set Output VI is also the method for specifying the set-

point.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 26 2/26/2015

3.4. C++

When using a script language, the API class to support Talon SRX is called CANTalon

(.cpp/.h/.java). When the object is constructed, the device ID is the first parameter. There may

be an optional second parameter to change the frequency at which the Talon SRX is updated

over CAN (default 10ms).

3.5. Java

When a CANTalon object is constructed in Java, the device ID is the first parameter. There

may be an optional second parameter to change the frequency at which the Talon SRX is

updated over CAN (default 10ms).

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 27 2/26/2015

3.6 Changing Mode

After a Talon software object is created, the Talon SRX mode can be changed from the default

Percent Vbus (open loop throttle) to the other supported modes programmatically. Additionally

the LabVIEW OPEN CAN TALON VI also allows caller to select the initial control mode.

3.6.1. LabVIEW

The CHANGE MODE VI can be used to change the Talon SRX mode, and set the first target set

point, throttle, or Talon Master ID to follow.

3.6.2. C++

The function SetControlMode() can be used to change the Talon SRX mode. Caller should

ensure Set() is called immediately after to properly set the initial target set point, throttle, or

Master ID to follow.

3.6.3. Java

The function changeControlMode() can be used to change the Talon SRX mode. Caller

should ensure set() is called immediately after to properly set the initial target set point,

throttle, or Master ID to follow.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 28 2/26/2015

3.6.4. Check Control Mode with Self-Test

The Self-Test can be used to confirm the desired mode of the Talon SRX (Throttle, Slave,

Position Closed-Loop, and Velocity Closed-Loop). However note that the Talon SRX mode will

not update until robot is enabled.

Example Self-Test

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 29 2/26/2015

4. Limit Switch and Neutral Brake Mode

4.1. Default Settings

An “out of the box” Talon will default with the limit switch setting of “Normally Open” for both

forward and reverse. This means that motor drive is allowed when a limit switch input is not

closed (i.e. not connected to ground). When a limit switch input is closed (is connected to

ground) the Talon SRX will disable motor drive and individually blink both LEDs red in the

direction of the fault (red blink pattern will move towards the M+/white wire for positive limit fault,

and towards M-/green wire for negative limit fault).

An “out of the box” Talon SRX will typically have a default brake setting of “Brake during

neutral”. The B/C CALL button will be illuminated red (brake enabled).

Since an “out of the box” Talon will likely not be connected to limit switches (at least not initially)

and because limit switch inputs are internally pulled high (i.e. the switch is open), the limit switch

feature is default to “normally open”. This ensures an “out of the box” Talon will drive even if no

limit switches are connected.

For more information on Limit Switch wiring/setup, see the Talon SRX User’s Guide.

Forward

Limit Switch

Mode

Limit

Switch

NO pin

Limit

Switch

NC pin

Limit

Switch

COM pin

Motor Drive

Switch open

Fwd. throttle

Motor Drive

Switch closed

Fwd. throttle

*Voltage

(Switch

Open)

*Voltage

(Switch

Closed)

Normally

Open pin4 N.A. pin10 Y N ~2.5V 0 V

Normally

Closed N.A. pin4 pin10 N Y 0 V ~2.5V

Disabled N.A. N.A. N.A. Y Y N.A. N.A.

Reverse

Limit Switch

Mode

Limit

Switch

NO pin

Limit

Switch

NC pin

Limit

Switch

COM pin

Motor Drive

Switch open

Rev. throttle

Motor Drive

Switch closed

Rev. throttle

*Voltage

(Switch

Open)

*Voltage

(Switch

Closed)

Normally

Open pin8 N.A. pin10 Y N ~2.5V 0 V

Normally

Closed N.A. pin8 pin10 N Y 0 V ~2.5V

Disabled N.A. N.A. N.A. Y Y N.A. N.A.

 *Measured voltage at the Talon SRX Limit Switch Input pin.

 Limit Switch Input Forward Input - pin4 on Talon SRX

 Limit Switch Input Reverse Input - pin8 on Talon SRX

 Limit Switch Ground - pin10 on Talon SRX

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 30 2/26/2015

4.2. roboRIO Web-based Configuration: Limit Switch and Brake

Limit switch features can be disabled or changed to “Normally Closed” in the roboRIO Web-

based Configuration. Similarly the brake mode can be change through the same interface.

Changing the settings will take effect once the “Save” button is pressed. The settings are saved

in persistent memory.

If the Brake or Limit Switch mode is changed in the roboRIO Web-based Configuration, the

Talon SRX will momentarily disable then resume motor drive. All other settings can be changed

without impacting the motor drive or enabled-state of the Talon SRX.

Additionally the brake mode can be modified by pressing the B/C CAL Button on the Talon SRX

itself, just like with previous generation Talons.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 31 2/26/2015

4.3. Overriding Brake and Limit Switch with API

The Brake and Limit Switch can, to a degree, be changed programmatically (during a match). A

great example of this would be for dynamic braking.

The programming API allows for overriding the active neutral brake mode. When this is done

the Brake/Coast LED will reflect the overridden value (illuminated red for brake, off for coast)

regardless of the startup brake mode specified in the roboRIO Web-based Configuration (i.e.

what’s saved in persistent memory).

Similarly the enabled states of the limit switches (on/off) for the forward and reverse direction

can be individually enabled/disabled by overriding them with programming API.

The brake and limit switch overrides can be confirmed in the Self-Test results. If limit switches

are overridden by the robot application, the forced states are displayed as “forced ON” or

“forced OFF”. Also the currently active brake mode is in the Self-Test results.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 32 2/26/2015

4.3.1. LabVIEW

The CONFIG ENABLED LIMITS VI can be used to override the limit switch enable states. When

overriding the limit switch enable states, set the override signal to true, then pass true/false to

the forward and reverse limit switch enable.

The neutral brake mode can also be overridden to Brake or Coast using the CONFIG BRAKE

COAST VI. If “No Override” is selected then the Startup Brake Mode is used.

4.3.2. C++

Limit Switches can be forced on or off using ConfigLimitMode(), along with soft limits (see

Section 8. Soft Limits).

ConfigNeutralMode() can be used to override the brake/coast mode. Also selecting the

enumerated value of kNeutralMode_Jumper will signal the Talon SRX to use its default setting

(controlled by roboRIO Web-based Configuration and B/C CAL button).

4.3.3. Java

enableLimitSwitch() can be used to override the enabled state for forward and reverse limit

switch enable. enableBrakeMode() can be used to override the brake/coast setting.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 33 2/26/2015

4.4. Changing limit switch mode between “Normally Open” or “Normally

Closed”

The limit switch setting that determines “Normally Open” vs “Normally Closed” can also be set

programmatically using the CONFIG LIMIT SWITCH VI. However care should be taken when

this is done. When a Talon SRX’s limit switch mode is changed from its current setting to a

different value, it briefly disables motor drive during the transition. This should not be a problem

since the limit switches in the robot are typically not changed during a match.

However it may be convenient to ensure NO/NC settings at startup (particularly when using the

non-default setting of Normally Closed) so as to avoid needing to use the roboRIO Web-based

Configuration to select NC whenever a Talon SRX needs to be added/replaced.

4.4.1. LabVIEW

4.4.2. C++

ConfigFwdLimitSwitchNormallyOpen() and ConfigRevLimitSwitchNormallyOpen() can

be used to change the NO/NC state of a limit switch input.

4.4.3. Java

ConfigFwdLimitSwitchNormallyOpen() and ConfigRevLimitSwitchNormallyOpen() can

be used to change the NO/NC state of a limit switch input.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 34 2/26/2015

5. Getting Status and Signals
The Talon SRX transmits most of its status signals periodically, i.e. in an unsolicited fashion.

This improves bus efficiency by removing the need for “request” frames, and guarantees the

signals necessary for the wide range of use cases Talon supports, are available.

These signals are available in API regardless of what control mode the Talon SRX is in.

Additionally the signals can be polled in the roboRIO Web-based Configuration (see Section

2.4. Self-Test).

Included in the list of signals are…

- Quadrature Encoder Position, Velocity, Index Rise Count, Pin States (A, B, Index)

- Analog-In Position, Analog-In Velocity, 10bit ADC Value,

- Battery Voltage, Current, Temperature

- Fault states, sticky fault states,

- Limit switch pin states

- Applied Throttle (duty cycle) regardless of control mode.

- Applied Control mode: Voltage % (duty-cycle), Position/Velocity closed-loop, or slave follower.

- Brake State (coast vs brake)

- Closed-Loop Error, the difference between closed-loop set point and actual position/velocity.

- Sensor Position and Velocity, the signed output of the selected Feedback device (robot must

select a Feedback device, or rely on default setting of Quadrature Encoder).

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 35 2/26/2015

5.1. LabVIEW

The GET STATUS VI can be used to retrieve the latest value for the signals Talon SRX

periodically transmits. Additionally, sticky faults can be cleared if “true” is passed into the “Clear

Sticky Fault” signal. To get a particular signal, unbundle-by-name the output of the GET STATUS

VI. Then select the signal to get by right clicking the center of the unbundle object.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 36 2/26/2015

5.2. C++

All get functions are available in C++. Here are a few examples….

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 37 2/26/2015

5.3. Java

All get functions are available in java. Here are a few examples….

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 38 2/26/2015

6. Setting the Ramp Rate
The Talon SRX can be set to honor a ramp rate to prevent instantaneous changes in throttle.

This ramp rate is in effect regardless of which mode is selected (throttle, slave, or closed-loop).

6.1. LabVIEW

Use the SET VOLTAGE RAMP to specify the ramp rate in percent per second.

6.2. C++

Ramp can be set in Volts per second using SetVoltageRampRate().

6.3. Java

Ramp can be set in Volts per second using setVoltageRampRate().

6.4. What is the slowest ramp possible?

The Talon SRX internally expresses the (Voltage) Ramp Rate in throttle units per 10ms (see

Section 17.6). As a result, at the minimum (slowest) ramp rate, the time from zero-to-full-throttle

is 10.23 seconds. This is derived from 1 throttle unit per 10ms. In terms of voltage per second,

this is equivalent to 1.173 V per second or 9.77% per second. When choosing an initial ramp

rate avoid specifying a rate that is slower than this limitation. Choosing a slower rate than

what’s possible will cause the programming API to truncate the calculated result to zero throttle

units per 10ms, leading to the effect of no ramp at all.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 39 2/26/2015

7. Selecting a Feedback Device
Although the analog and quadrature signals are available all the time, the Talon SRX requires

the robot application to “pick” a particular “Feedback Device” for soft limit and closed-loop

features.

The selected “Feedback Device” defaults to Quadrature Encoder.

Once a “Feedback Device” is selected, the “Sensor Position” and “Sensor Velocity” signals will

update with the output of the selected feedback device. It will also be multiplied by (-1) if

“Reverse Feedback Sensor" is asserted programmatically.

Alternatively the output of the closed loop logic can also be inverted if necessary.

7.1. LabVIEW

Use SET REF to select which Feedback Sensor to use for soft limits and closed-loop features.

The supported selections are: Quadrature Encoder, Analog Encoder (or any continuous 3.3V

analog sensor) and Analog Potentiometer.

7.2. C++

SetFeedbackDevice() can be used to select Quadrature Encoder, Analog Encoder (or any

continuous 3.3V analog sensor) or Analog Potentiometer. Depending on software release

EncRising may also be supported (increment position per rising edge on Quadrature-A).

SetSensorDirection() can be used to keep the sensor and motor in phase for proper limit

switch and closed loop features. This functions sets the "Reverse Feedback Sensor" signal.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 40 2/26/2015

7.3. Java

setFeedbackDevice() can be used to select Quadrature Encoder, Analog Encoder (or any

continuous 3.3V analog sensor) or Analog Potentiometer. Depending on software release

EncRising may also be supported (increment position per rising edge on Quadrature-A).

reverseSensor() and reverseOutput() are also available in java. reverseSensor() sets

the "Reverse Feedback Sensor" signal. reverseOutput() sets the "Reverse Closed-Loop

Output" signal.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 41 2/26/2015

7.4. Reversing sensor direction, best practices.

In order for limit switches and closed-loop features to function correctly the sensor and motor

has to be “in-phase”. This means that the sensor position must move in a positive direction as

the motor controller drives positive throttle. To test this, first drive the motor manually (using

gamepad axis for example). Watch the sensor position either in the roboRIO Web-based

Configuration Self-Test, or by calling GetSensorPosition() and printing it to console. If the

“Sensor Position” moves in a negative direction while Talon SRX throttle is positive (blinking

green), then use the “Reverse Feedback Sensor” signal to multiply the sensor position by (-1).

Then retest to confirm “Sensor Position” moves in a positive direction with positive motor drive.

When using the Self-Test be sure to track the Selected Device

Position which is above the Quadrature Encoder signals. These

signals will reflect if "Reverse Feedback Sensor" is asserted.

In the special case of using the EncRising feedback device, "Reverse Feedback Sensor" will

need to be false. This Feedback Device is guaranteed to be positive since it increments per

rising edge, and never decrements. "Reverse Closed-Loop Output" can then be used to output

a negative motor duty-cycle. "Reverse Closed-Loop Output" can also be used to reverse a slave

Talon SRX to be the signed opposite of the master Talon SRX.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 42 2/26/2015

8. Soft Limits
Soft limits can be used to disable motor drive when the “Sensor Position” is outside of a

specified range. Forward throttle will be disabled if the “Sensor Position” is greater than the

Forward Soft Limit. Reverse throttle will be disabled if the “Sensor Position” is less than the

Reverse Soft Limit. The respective Soft Limit Enable must be enabled for this feature to take

effect.

The settings can be set and confirmed in the roboRIO Web-based Configuration.

8.1. LabVIEW

The soft limits can also be set up programmatically. In LabVIEW, Soft Limit enables and

thresholds can be set using both the CONFIG ENABLED LIMITS VI and CONFIG SOFT LIMITS

VI.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 43 2/26/2015

8.2. C++

ConfigLimitMode() can be used to enable soft limits (and optionally limit switches if they are

wired).

8.3. Java

The limit threshold and enabled states can be individually specified using:

setForwardSoftLimit(), enableForwardSoftLimit(), setReverseSoftLimit(), and

enablReverseSoftLimit().

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 44 2/26/2015

9. Follower Mode
Any given Talon SRX on CAN bus can be instructed to “follow” the drive output of another Talon

SRX. This is done by putting a Talon SRX into “slave” mode and specifying the device ID of the

“Master Talon” to follow. The “Slave Talon” will then mirror the output of the “Master Talon”.

The “Master Talon” can be in any mode: closed-loop, voltage percent (duty-cycle), or even

following yet another Talon SRX.

9.1. LabVIEW

When opening a Talon SRX, the Master Device Number determines which Talon to follow when

in Slave Mode. The CHANGE MODE VI can also be used to enter Slave mode and specify the

Master Device ID to follow.

9.2. C++

CANTalon objects can be constructed with the Follower mode, or can be changed afterwards.

Pass the device ID of the Master Talon into Set(). The device ID should be between 0 and 62

(inclusive).

9.3. Java

CANTalon objects can be constructed with the Follower mode, or can be changed afterwards.

Pass the device ID, of the Master Talon into set(). The device ID should be between 0 and 62

(inclusive). Alternatively you can call the getDeviceID() routine of the Talon object created

with the Master Talon SRX’s device ID.

9.4. Reversing Slave Motor Drive

"Reverse Closed-Loop Output" can be used to invert the output of a slave Talon. This may be

useful if a slave and master Talon are wired out of phase with each other.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 45 2/26/2015

10. Closed-Loop Modes
The 2015 release firmware for Talon SRX supports position closed-loop and velocity closed-

loop. The actual implementation can be seen in Section 18. How is the closed-loop

implemented? . Future firmware updates will include Current Closed-Loop, Voltage

compensation, and other modes.

11. Motor Control Profile Parameters
The Talon persistently saves two unique Motor Control Profiles.

Each Motor Control Profile contains…

P Gain: Kp constant to use when control mode is a closed-loop mode.

I Gain: KI constant to use when control mode is a closed-loop mode.

D Gain: KD constant to use when control mode is a closed-loop mode.

F Gain: KF constant to use when control mode is a closed-loop mode.

I Zone: Integral Zone. When nonzero, Integral Accumulator is automatically cleared

when the absolute value of Closed-Loop Error exceeds it.

(Closed-Loop) Ramp Rate: Ramp rate to apply when control mode is a closed-loop

mode.

One unique feature of the Talon SRX is that gain values specified in a Motor Control Profile are

not dedicated to just one type of closed-loop. When selecting a closed-loop mode (for example

position or velocity) the robot application can select either of the two Motor Control Profiles to

select which set of values to use. This can be useful for gain scheduling (changing gain values

on-the-fly) or for persistently saving two sets of gains for two entirely different closed loop

modes.

The settings can be set and read in the web control page.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 46 2/26/2015

11.1. Persistent storage and Reset/Startup behavior

The Talon SRX was designed to reduce the “setup” necessary for a Talon SRX to be functional,

particularly with closed-loop features. This is accomplished with efficient CAN framing and

persistent storage.

All settings in the Motor Control Profile (MCP) are saved persistently in flash. Additionally there

are two complete Motor Control Profiles. Teams that use a constant set of values can simply

set them using the roboRIO Web-based Configuration, and they will “stick” until they are

changed again.

Additionally Motor Control Profile (MCP) Parameters can be changed though programming API.

When they are changed, the values are ultimately copied to persistent memory using a wear

leveled strategy that ensures Flash longevity, but also meets the requirements for teams.

-Changing MCP values programmatically always take effect immediately (necessary for gain

tuning).

-If the MCP Parameters have remained unchanged for fifteen seconds, and an MCP Parameter

value is then changed using programming API, they are copied to persistent memory

immediately.

-If the persistent memory has been updated within the last fifteen seconds due to a previous

value change, and an MCP Parameter value is changed again, it will be applied to persistent

memory once fifteen seconds has passed since the last persistent memory update. However

the closed-loop will react immediately to the latest values sent over CAN bus.

-If power loss occurs during the period of time when MCP Parameters are being saved to

persistent storage, the previous values for all MCP Parameters prior to last value-change is

loaded. This is possible because the Talon SRX keeps a small history of all value changes.

These features fit well with the two common strategies that FRC teams utilize when

programmatically changing closed-loop parameters...

(1) Teams use programming API at startup to apply previous tested constants.

(2) Teams use programming API to periodically set/change the constants because they are

“gain scheduled” or action specific.

For use case (1), the constants are eventually saved in Talon SRX persistent memory (worst

case fifteen seconds after robot startup). Once this is done the Talon SRX will have the values

in persistent storage, so even after Talons are power cycled, they will load the constants that

were previous set. This frees the robot controller from needing to re-set the values during a

power cycle, reset, brownout, etc…. On subsequent robot startups, when the robot controller

sends the same values again, and Talon SRX will still react by updating its variables, and

comparing against what’s saved in persistent storage to see if it needs to be updated again. In

the event the robot code changes to use new constants, the Talon will again update the

persistent storage shortly after getting the new values.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 47 2/26/2015

For use case (2) teams, there are two “best” solutions depending on what’s being

accomplished. If a team needs to switch between two sets of gains, they can leverage both

MCP slots by setting one set of constants in slot 0, and another unique set of constants in slot 1.

Then during the match, teams can switch between the two with a single API. This means that

as far as the Talon is concerned, the values in each slot never changes so the contents of the

Talon’s persistent storage never changes. Instead the robot controller just changes which slot

to use. So this use case regresses to use case (1), and a freshly booted Talon already has all

the MCP parameters it needs to function.

For use case(2) teams that requires more than two gain sets likely are changing gain values so

frequently (as a function of autonomous, or state machine driven logic) that they would prefer

not to rely on the previous set of gains sent to the Talon (despite it being available at startup).

In which case they likely will periodically set the MCP parameters continuously (every number of

loops or fixed period of time). Talon SRX always honors whatever parameters are requested

over CAN bus, overriding what was loaded at startup or mirrored in persistent storage. And

since the persistent storage is wear-leveled and mirrored at fifteen second intervals, this has no

harmful impact on Flash longevity. So this use case is also supported well.

Beyond the Motor Control Profile Parameters, closed-loop modes requires selecting

-which control mode (position or velocity)

-which feedback sensor to use

-if the feedback sensor should be reversed

-if the closed-loop output should be reversed

-what is the latest target or set point

-the global ramp rate (if specified)

-which Motor Control Profile Slot to use.

The programming API provides set functions for all of these, but what’s noteworthy is that all of

these signals are saved in the robot controller, and periodically sent inside one complete CAN

frame. This means that if a Talon SRX loses power and is booted back up again (due to cable

disconnect, battery brownout, etc…) the Talon receives all of the necessary signals after getting

one single control frame. This is far more robust than requiring the robot application to re-set

and re-acknowledge each parameter individually in the event of a reset.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 48 2/26/2015

11.2. Inspecting Signals

When testing/calibrating closed-loops it is helpful to plot/check…

-Closed-Loop Error

-Output (Applied) Throttle

-Profile Slot Select (which profile slot the closed-loop math is using).

-Position and Velocity depending control mode.

The Self-Test can provide these values for quick sanity checking. These values are also

available with programming API for custom plotting, smart dashboard, LabVIEW front panels,

etc...

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 49 2/26/2015

12. Position/Velocity Closed-Loop Example

12.1. Setting Motor Control Profile Parameters

12.1.1. LabVIEW

Setting the Motor Controller Profile parameters can be done with the SET PID VI.

This allows filling all parameters for a given Parameter Slot.

Specifying the set point is also done with the Set Output VI. Additionally you can select the

Parameter Slot to use for the selected closed-loop.

12.1.2. C++

Closed-loop parameters for a given profile slot can be modified with several different functions.

Setting the target position or velocity is also done with Set().

12.1.3. Java

Closed-loop parameters for a given profile slot can be modified using setPID(). This also sets

the “Profile Slot Select” to the slot being modified. There are also individual Set functions for

each signal.

Setting the target position or velocity is also done with set().

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 50 2/26/2015

12.2. Clearing Integral Accumulator (I Accum)

Clearing the integral accumulator (“I Accum”) may be necessary to prevent integral windup.

When using “IIZone” this is done automatically when the Closed-Loop Error is outside the

“IIZone”. However there may be other situations when manually clearing the integral

accumulator is necessary. For example, if the mechanism that’s being closed-looped is “close

enough” and its desirable to reduce occasional spurts of movement caused by a slowly

incrementing integral term, then the robot logic can periodically clear the “I Accum” to prevent

this.

12.2.1. LabVIEW

In this example a case structure is leveraged to conditionally clear the Integral Accumulator

when the case structure conditional evaluates true (this example uses a system button on the

front panel).

12.2.2. C++/Java

The ClearIaccum() function is available in C++/Java.

12.2.3. Is Integral Accum cleared any other time?

In addition to the “IIZone” feature and manual clear, there are certain cases where the integral

accumulator is automatically cleared for more predicable motor response…

-Whenever the control mode of a Talon is changed.

-When a Talon is in the disabled state.

-When the motor control profile slot has changed.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 51 2/26/2015

13. Setting Sensor Position
Depending on the sensor selected, the user can modify the “Sensor Position”. This is

particularly useful when using a Quadrature Encoder (or any relative sensor) which needs to be

“zeroed” or “home-ed” when the robot is in a known position.

Firmware 1.1: When using an “Analog Encoder”, setting the “Sensor Position” updates the top

14 bits of the 24bit Sensor Position value (which is the overflow/underflow portion). The bottom

10 bits will still reflect the analog voltage scaled over 3.3V (read only). With version 1.4 and on

the full Sensor Position can be set.

Setting this signal when “Analog Potentiometer” is selected has no effect.

13.1. LabVIEW

In order to modify the “Sensor Position”, user will likely have to leverage the

WPI_CANTalonSRX_SetParameter.vi. This can be drag dropped after locating the LabVIEW

installer directory and searching for the VI file location. Select “Sensor Position” for the

“Parameter” signal and the desired constant for the “Value” signal. In this example “0” is

selected to re-zero the sensor when a front panel button is pressed.

13.1.1. Motor Enable

Alternatively the Motor Enable VI can be used to change the Sensor Position. If the Robot

Application needs to turn on/off motor control in a periodic fashion, change the control mode
instead (see Section 3.6) since this VI has the side effect of modifying Sensor Position.

13.2. C++

SetPosition() can be used to change the current sensor position, if a relative sensor is used.

13.3. Java

setPosition() can be used to change the current sensor position, if a relative sensor is used.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 52 2/26/2015

14. Fault Flags
The GET STATUS VI can be used to retrieve sticky flags, and clear them.

14.1. LabVIEW

14.2. C++

Use GetFaults() and GetStickyFaults() to get integral bit fields that can be masked against

the constants available in the CANSpeedController header.

ClearStickyFaults() can be used to clear all sticky fault flags.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 53 2/26/2015

14.3. Java

Use the various getFault<name> and getStickyFault<name> functions to individually detect

the various fault conditions.
getFaultOverTemp()

getFaultUnderVoltage()

getFaultForLim()

getFaultRevLim()

getFaultForSoftLim()

getFaultRevSoftLim()

getStickyFaultOverTemp()

getStickyFaultUnderVoltage()

getStickyFaultForLim()

getStickyFaultRevLim()

getStickyFaultForSoftLim()

getStickyFaultRevSoftLim()

clearStickyFaults() can be used to clear all sticky fault flags.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 54 2/26/2015

15. CAN bus Utilization/Error metrics
The driver station provides various CAN bus metrics under the “lightning bolt” tab.

Utilization is the percent of bus time that is in use relative to the total bandwidth available of the

1Mbps Dual Wire CAN bus. So at 100% there is no idle bus time (no time between frames on

the CAN bus).

Demonstrated here is 69% bus use when controlling 16 Talon SRXs, along with 1 Pneumatics

Control Module (PCM) and the Power Distribution Panel (PDP).

The “Bus Off” counter increments every time the CAN Controller in the roboRIO enters “bus-off”,

a state where the controller “backs off” transmitting until the CAN bus is deemed “healthy”

again. A good method for watching it increment is to short/release the CAN bus High and Low

lines together to watch it enter and leave “Bus Off” (counter increments per short).

The “TX Full” counter tracks how often the buffer holding outgoing CAN frames (RIO to CAN

device) drops a transmit request. This is another common symptom when the roboRIO no

longer is connected to the CAN bus.

The “Receive” and “Transmit” signal is shorthand for “Receive Error Counter” and “Transmit

Error Counter”. These signals are straight from the CAN bus spec, and track the error instances

occurred “on the wire” during reception and transmission respectively. These counts should

always be zero. Attempt to short the CAN bus and you can confirm that the error counts rise

sharply, then decrement back down to zero when the bus is restored (remove short, reconnect

daisy chain).

When starting out with the FRC control system and Talon SRXs, it is recommend to watch how

these CAN metrics change when CAN bus is disconnected from the roboRIO and other CAN

devices to learn what to expect when there is a harness or a termination resistor issue.

Determining hardware related vs software related issues is key to being successful when using

a large number of CAN devices.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 55 2/26/2015

15.1. How many Talons can we use?

Generally speaking a maximum of 16 Motor controllers can be powered at once using a single

PDP (sixteen breaker slots). However FRC game rules should always be checked as it

determines what it considered legal. This is typically the bottleneck for how many Talon SRXs

can be used despite having CAN device ID space for 63 device IDs. Release software is

always tested to support 16 Talon SRXs, 1 PCM, and 1 PDP with guaranteed control of each

Talon at a rate of 10ms. However this is not the limit. There is still additional bandwidth for

more nodes. Additionally, if faster response time is desired, control frame periods can be

decreased from the default 10ms, but keep a watchful eye of the CAN bus utilization to ensure

reliable communication.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 56 2/26/2015

16. Troubleshooting Tips and Common Questions

16.1. When I press the B/C CAL button, the brake LED does not change,

neutral behavior does not change.

This is the expected behavior if the robot application is overriding the brake mode. The B/C

CAL button press does toggle the brake mode in persistent memory, however the LED and

selected neutral behavior will honor the override sent over CAN bus. Check if the override API

is being used in the robot application logic.

16.2. Changing certain settings in Disabled Loop doesn’t take effect until

the robot is enabled.

This is the expected behavior, the control frame that updates the Talon SRX with the latest

brake/limit switch override, control mode, and set-point does not get transmitted in robot-disable

mode. However the values are saved so that when the robot is enabled, the first control frame

sent will have up to date values.

For example, the B/C CAL LED will not reflect changes in the overridden brake mode if

SetBrake()is called in the disabled loop until after the robot has been enabled. Once the robot

is enabled, the control frame sent to the Talon will enable the motor controller and contain the

latest settings that were cached during disabled loop (including the brake override).

Similarly Self-Test results also won’t reflect parameters that are changed programmatically until

the robot is enabled, specifically the brake/limit switch overrides.

The startup values for limit switch and brake mode can be specified in the roboRIO’s Web-

based Configuration if they must be configured prior to robot enable.

16.3. The robot is TeleOperated/Autonomous enabled, but the Talon SRX

continues to blink orange (disabled).

Most likely the device ID of that Talon is not being used. In other words there is no Open Motor

(LabVIEW) or constructed CANTalon (C++/Java) with that device ID. This can be confirmed by

doing a Self-Test in the roboRIO Web-based Configuration, and confirm the “TALON IS NOT

ENABLED!” message at the top.

16.4. When I attach/power a particular Talon SRX to CAN bus, The LEDs on

every Talon SRX occasionally blink red. Motor drive seems normal.

If there is a single CAN error frame, you can expect all Talon SRXs on the bus to synchronously

blink red. This is a great feature for detecting intermittent issues that normally would go

unnoticed. If attaching a particular Talon brings this behavior out, most likely its device ID is

common with another Talon already on the bus. This means two or more “common ID” Talon

SRXs are periodically attempting to transmit using the same CAN arbitration ID, and are

stepping on each other’s frame. This causes an intermittent error frame which then reveals

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 57 2/26/2015

itself when all Talon SRXs blink red. Check the roboRIO Web-based Configuration for the

“There are X devices with this Device ID” explained in Section 2.2. Common ID Talons.

16.5. If I have a slave Talon SRX following a master Talon SRX, and the

master Talon SRX is disconnected/unpowered, what will the slave Talon

SRX do?

The slave Talon SRX monitors for throttle updates from the master. If the slave Talon doesn’t

see an update after 100ms, it will disable its drive. The LEDs will reflect robot-enable but with

zero throttle (solid orange LEDs).

16.6. Is there any harm in creating a software Talon SRX for a device ID

that’s not on the CAN bus? Will removing a Talon SRX from the CAN bus

adversely affect other CAN devices?

No! Attempting to communicate with a Talon SRX that is not present will not harm the

communication with other CAN nodes. The communication strategy is very different than

previously support CAN devices, and this use case was in mind when it was designed.

Creating more Talon software objects (LabVIEW Motor Open, or C++/Java class instances) will

increase the bus utilization since it means sending more frames, however this should not

adversely affect robot behavior so long as the bus utilization is reasonable.

However the resulted error messages in the DS may be a distraction so when permanently

removing a Talon SRX from the CAN bus, it is helpful to synchronously remove it from the robot

software.

16.7. Driver Station log says Error on line XXX of CANTalon.cpp

This is to be expected when constructing a CANTalon with a device ID that is not present on

CAN bus in C++/Java. These are caused by asserts in the programming API meant to signal

the developer that some expected CAN frame was not detected on the bus. Although it should

not impact other CAN nodes, it can be a distraction since it may mask other unrelated errors

reported in the driver station that are no longer visible.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 58 2/26/2015

16.8. Driver Station log says -44087 occurred at NetComm...

This is to be expected when referencing a “CAN Talon SRX” with a device ID that is not present
on CAN bus in LabVIEW. Although it should not impact other CAN nodes, it can be a
distraction since it may mask other unrelated errors reported in the driver station that are no
longer visible.

16.9. Why are there multiple ways to get the same sensor data?

GetEncoder() versus GetSensor()?

The API that fetches latest values for Encoder (Quadrature) and Analog-In (potentiometer or a

continuous analog sensor) reflect the pure decoded values sent over CAN bus (every 100ms).

They are available all the time, regardless of which control mode is applied or whether the

sensor type has been selected for soft limits and closed-loop mode. These signals are ideal for

instrumenting/logging/plotting sensor values to confirm the sensors are wired and functional.

Additionally they can be read at the same time (you can wire a potentiometer AND a quadrature

encoder and get both position and velocities programmatically). Furthermore the robot

application could actually use this method to process sensor information directly. If the 100ms

update rate is not sufficient, it can be overridden to a faster rate.

For the purpose of using soft limits and/or closed-loop modes, the robot application must select

which sensor to use for position/velocity. Selecting a sensor will cause the Talon SRX to mux

the appropriate sensor to the closed-loop logic, the soft limit logic, to the “Sensor Position” and

“Sensor Velocity” signals (update 20ms). These signals also can be inverted using the

"Reverse Feedback Sensor" signal in order to keep the sensor in phase with the motor.

Since “Sensor Position” and “Sensory Velocity” are updated faster (20ms) they can also be

used for processing sensor information instead of overriding the frame rates.

16.10. So there are two types of ramp rate?

There are two ways to “ramp” or acceleration cap the motor drive.

The “Voltage Ramp” API in all three languages are functional, and takes effect regardless of

which mode the Talon SRX is in (duty cycle, slave, Position, Speed).

The selected Motor Control Profile also has a “Closed-Loop Ramp Rate” which can be used to

apply a unique ramp rate only when the motor controller is closed-looping and the Profile Slot

has been selected.

By having two options, a robot can have mode specific ramping with minimal effort in the robot

controller. For example, a team may require a “weak” ramp to slightly dampen motor drive to

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 59 2/26/2015

prevent driver error (flipping the robot), or to reduce impulse stress (snapping chains). But

when closed-looping, an additional ramp might be necessary to smooth the closed-loop

maneuver.

16.11. Why are there two feedback “analog” device types: Analog Encoder

and Analog Potentiometer?

When Analog Potentiometer is selected, the 10 bit Analog to Digital Converter (ADC) converts

the 0 to 3.3V signal present on the analog input pin to a value between 0 and 1023.

When Analog Encoder is selected, the same conversion takes place, but rollovers to and from

the min/max voltage are tracked so that analog sensors can be used as relative sensors. If an

overflow is detected (1023 => 0), the position signal transitions (1023 => 1024). Likewise an

underflow (0=>1023) is interpreted as (0 => -1). This is useful when using an analog encoder

and allowing it to exceed the max turn count. This way an analog encoder can be used as a

continuous relative sensor.

16.12. After changing the mode in C++/Java, motor drive no longer works.

Self-Test says “No Drive” mode?

After calling a Talon SRX object’s changeMode() function, the Talon SRX mode is set to

disabled until the Set()/set() routine is called. This is to ensure the robot application has a

chance to pass a new target set point before the new control mode is applied. Any call to

changeMode() should be immediately followed with a Set()so that motor drive is not set to

neutral.

This ensures that when the robot application changes a Talon’s mode, it also specifies the

throttle/set-point/or slave ID for the new mode to ensure all the necessary information is set for

the mode switch.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 60 2/26/2015

16.13. All CAN devices have red LEDs. Recommended Preliminary checks

for CAN bus.

Some basic checks for the CAN harness are…

Turn off robot, measure resistance between CANH and CANL.

 ~60 ohm is typical (120ohm at each end of the cable).

 ~120 ohm suggests that one end is missing termination resistor. Terminate the end

using PDP jumper or explicit 120 ohm resistor.

 ~0 ohm suggests a short between CANH and CANL.

 INF or large resistances, missing termination resistor at each side.

More information can be found in Talon SRX User’s Guide.

Check the roboRIO’s Web-based Configuration to see if any devices appear, and ensure

there are no Talon SRX’s sharing the same device ID.

16.14. Driver Station reports “MotorSafetyHelper.cpp: A timeout…”, motor

drive no longer works. roboRIO Web-based Configuration says “No Drive”

mode? Driver Station reports error -44075?

This can happen after enabling Motor Safety Enable and not calling Set()/set() often enough

to meet the expiration timeout.

Another symptom of this is seeing “No Drive” has the control mode in the Self-Test.

When the safety timeout expires in LabVIEW, the error message will be different…

See section 19 for more information.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 61 2/26/2015

16.15. Motor drive stutters, misbehaves? Intermittent enable/disable?

Check the CAN Utilization to ensure it’s not near 100%. An abnormally high percent may be a

symptom of “common ID” Talons. This also can occur when selecting custom frame rates that

are too fast.

Check the roboRIO’s Web-based Configuration to confirm all expected Talons are populated

and are enabled according to the Self-Test.

Check the “Under Vbat” sticky flag in the Self-Test. This will rule out power/voltage related

issues.

If the issues occur only during rapid changes in direction and magnitude, the power

cables/crimps may not be efficient enough to deliver power during the stall-period when a

loaded motor changes direction. This can be confirmed if increasing the voltage ramp rate

removes/fixes this symptom.

Be sure to check the Driver Station Logs for packet loss since that can cause intermittent robot

disables.

If the Driver Station has 3rd party software that uses network communication, or if the Driver

Station

When using the DAP-1522 (or similar radio) be sure to use latest stable firmware. For example,

rev-A DAP1522s (with production ship firmware) will not reliably enable the robot. Additionally

consult FRC rules and documentation for which hardware rev is legal for competition and how to

properly setup the radio.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 62 2/26/2015

16.16. What to expect when devices are disconnected in roboRIO’s Web-

based Configuration. Failed Self-Test?

Depending what version of software is released, a discovered Talon will display loss of

connection one of two ways.

The Firmware Version may report (Device is not responding).

Alternatively the tree element will gray out to indicate loss of communication….

The roboRIO internals rechecks the CAN bus once every five seconds so when

connecting/disconnecting Talons to/from the bus, be sure to wait at least five seconds and

refresh the webpage to detect changes in connection state.

Doing a Self-Test when the Talon SRX is not present on the CAN bus will report a red ‘X’ in the

top left portion of the Self-Test report. Depending on what robot controller image is release you

may see the stale values of all signals when the red “X” is present.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 63 2/26/2015

16.17. When I programmatically change the “Normally Open” vs “Normally

Closed” state of a limit switch, the Talon SRX blinks orange momentarily.

Changing the “Normally Open” versus “Normally Closed” setting of a motor controller will cause

it to disable motor drive momentarily. If the goal is to enable/disable the limit switch feature, this

can be done without affecting motor drive using the Limit Switch overrides.

Typically the only time a Talon SRX NO/NC setting won’t match what is specified

programmatically will be when a new Talon SRX is installed for the first time. Once the

programming API has changed the setting once, the Talon SRX’s persistent limit switch mode

will match what the programming API requests, and therefore will not impact robot performance.

16.18. How do I get the raw ADC value (or voltage) on the Analog Input pin?

The bottom ten bits of Analog-In Position is equal to the converted ADC value. The range of [0,

1023] scales to [0V, 3.3V]. Additionally, if “Analog Potentiometer” is selected as the Feedback

Device, the signal “Sensor Position” will exactly equal the bottom ten bits of Analog-In Position.

16.19. Recommendation for using relative sensors.

When using relative sensors for closed-loop control, it’s always good practice to design in a way

to re-zero your robot. Regardless of how/where relative sensors are connected (robot controller

IO, Talon SRX, etc…), there is always the potential for sensors to “walk” or “drift” due to…

-Mechanical slip issues

-Skipped gear teeth in chain

-Intermittent electrical connections (harness gets damaged in middle of a match)

-Power cycle robot when armatures are not in their “home” position.

-Remote resets of robot controller when armatures are not in their “home” position.

A common solution to this is to design a way in the gamepad logic to force your robot into a

“manual mode” where the driver/arm operator can manually servo motors to a home position

and press a button (or button combination) to re-zero (or set to the “home” position values) all

involved sensors.

Teams that do this already can continue to use this method with Talon SRX since there is are

set functions to modify “Sensor Position”.

16.20. Does anything get reset or lost after firmware updates?

The device ID, limit switch startup settings, brake startup settings, Motor Control Profile

Parameters, and sticky flags are all unaffected by the act of field-upgrading. If a particular

firmware release has a “back-breaking” change, it will be explicitly documented.

16.21. Analog Position seems to be stuck around ~100 units?

When the analog input is left unconnected, it will hover around 100 units. If an analog sensor

has been wired, most likely it’s connected to the wrong pin. Recheck wiring against the Talon

SRX User’s Guide.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 64 2/26/2015

16.22. Limit switch behavior doesn’t match expected settings.

First check the Startup Settings in the roboRIO Web-based Configuration to determine that the

“Normally Open”/ “Normally Closed” settings are correct. They can be changed

programmatically and in the web page so it’s worth confirming. Here we see both directions use

NO limit switches...

Then press the “Self-Test” button to check…

-The open/closed state of the limit switch input pin on the Talon SRX.

-If enable/disable state of the limit-switch logic is overridden programmatically.

-Check the fault and sticky faults to see if limit fault conditions are detected.

In this example the Fwd. Limit Switch fault is not set despite the Fwd. Limit Switch being closed.

This is because the Limit Switch logic forced OFF, because the feature is disable

programmatically. As a result closing the forward limit switch will not disable motor drive.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 65 2/26/2015

16.23. How fast can I control just ONE Talon SRX?

The fastest control frame rate that can be specified is 1ms. That means that the average period

at which the throttle/set point can be updates is 1ms. This will increase bus utilization by

approximately 15%, which is acceptable if the number of Talon SRXs is few. Always check the

CAN bus performance metrics in the Driver Station when doing this.

16.24. Expected symptoms when there is excessive signal reflection.

If the CAN bus harness has excessive signal reflection due to improper wiring or missing

termination resistors, the following symptoms may be seen…

-Driver Station will show Rx and Tx CAN errors intermittently (see Section 15), particularly with

higher bus utilization.

-CAN bus utilization will be higher than normal. This is because CAN devices transmit error

frames in response to detecting improper frames. This is helpful if you are in the habit of

checking your bus utilization every once in a while and knowing what is typical for your robot.

See Section 15 for more details.

-The LED of every CAN device on the bus will blink red intermittently during normal use (the

same symptom as Section 16.4). Both common-ID Talons and excessive signal reflection can

cause error frames to appear, which trigger every CTRE CAN device to intermittently blink red

during normal use.

One reliable way to observe this LED behavior is to deliberately leave a couple common-ID

Talon SRXs on your CAN Bus. Then, power up your robot and leave it disabled. All Talon

SRXs will rail-road orange (healthy CAN bus and disabled). Now watch any particular Talon

SRX for a minute or so. It will blink red intermittently as the two (or more) common-ID Talon

SRXs inevitably disrupt each other’s frame transmission.

-Measured DC resistance between CANH and CANL (when robot is unpowered) should be
approximately 60 Ω. If this is not the case then recheck the CAN wiring and termination
resistors (see Talon SRX User’s Guide).

16.25. LabVIEW application reads incorrect Sensor Position. Sensor

Position jumps to zero or is missing counts.

This is a common symptom if the LabVIEW application is calling the Motor Enable VI
periodically. This VI has the side-effect of modifying the Sensor Position every time it’s invoked.
Additionally wiring the current Sensor Position to this signal also will prevent proper signal
decoding since the RIO will send stale positions to the Talon SRX, overwriting valid signal
changes in the Talon. See Section 13.1.1 for more information.

Additionally, check that the correct Feedback Device is selected (Section 7). Remember that
the Feedback Device Select is sent only when the robot is enabled. Since there is only one
control frame that contains all control signals, this ensures Talon has the correct sensor
selected when Talon is enabled (Section 20.6).

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 66 2/26/2015

16.26. CAN devices do not appear in the roboRIO Web-based config.

Normally devices appear under the “CAN Interface” tree node…

…however if the roboRIO is not correctly wired to the CAN Bus, then the tree node will have no

elements listed underneath…

…in which case double-check the CAN bus wiring and termination strategy. See the Talon SRX
User’s Guide for more information on wiring Talon SRXs. Also see the “FRC Screen steps”
online documentation for more information on wiring the other CAN devices in the control
system. Additionally, check the status LEDs of the CAN devices. Generally, red LED states
reflect an unhealthy CAN connection, which will help diagnose wiring issues.

16.27. After a power boot of the robot, and then enabling, occasionally a

single CAN actuator does not enable (blinks orange as though it is

disabled). Issue corrects itself after pressing “Restart Robot Code” in

Driver Station and re-enabling robot.

See section 21.18. If using C++, an alternative solution is to simply update to WPILib 2015-02-

24.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 67 2/26/2015

16.28. Occasionally when a firmware update is attempted we get an

immediate error. Talon SRX is blinking green/orange. However when we

re-imaged the RIO the issue went away?

If you are a C++ team using a WPLib version prior to 2015-02-24, then you may be susceptible

to Functional Limitation 21.18. A secondary symptom of the roboRIO startup issue is that the

first attempt at field-updating a CAN device will cause this error.

A second attempt at field-updating it will cause this error.

Although the root-cause is a startup condition in the roboRIO, there are many solutions to this…

16.28.1. The simplest solution is to update your C++ WPILib to 2015-02-24 or newer. This
resolves the root-cause, the startup race that creates Functional Limitation 21.18. Rebuild,
redeploy, and reboot the roboRIO, then reattempt flashing CAN devices.

16.28.2. Another alternative is to “undeploy” your C++ built FRCUserProgram application.
Deleting/renaming the file (inside /home/lvuser using SSH or FTP) is sufficient. Then reboot
roboRIO and re-attempt flashing CAN devices. Re-deploy your robot application when you’ve
finished re-flashing your CAN devices.

16.28.3. A third alternative is to re-image the roboRIO, however this is an excessive solution
and is not recommended. The reason this has worked for teams previously is because it has
the side effect of removing the deployed application, just like 16.28.2. However reimaging the
RIO takes considerably more time (several minutes) whereas the two previous solutions are
much faster and lower risk.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 68 2/26/2015

17. Units and Signal Definitions
This section describes the units used for various signals.

17.1. (Quadrature) Encoder Position

When measuring the position of a Quadrature Encoder, the position is measured in 4X encoder

edges. For example, if a US Digital Encoder with a 360 cycles per revolution (CPR) will count

1440 units per rotation when read using “Encoder Position” or “Sensor Position”.

The velocity units of a Quadrature Encoder is the change in Encoder Position per TvelMea

(TvelMeas=0.1sec). For example, if a US Digital Encoder (CPR=360) spins at 20 rotations per

second, this will result in a velocity of 2880 (28800 position units per second).

17.2. Analog Potentiometer

When measuring the position of a 3.3V Analog Potentiometer, the position is measured as a 10

bit ADC value. A value of 1023 corresponds to 3.3V. A value of 0 corresponds to 0.0V.

The velocity units of a 3.3V Analog Potentiometer is the change in Analog Position per TvelMea

(TvelMeas=0.1sec). For example if an Analog Potentiometer transitions from 0V to 3.3V (1023

units) in one second, the Analog Velocity will be 102.

17.3. Analog Encoder, “Analog-In Position”

Like 3.3V Analog Potentiometers, the 10 bit ADC is used to scale [0 V, 3.3 V] => [0, 1023].

However when the Analog Encoder “wraps around” from 1023 to 0, the Analog Position will

continue to 1024. In other words, the sensor is treated as “continuous”.

The velocity units of a 3.3V Analog Encoder is the change in Analog Position per 100ms

(TvelMeas=0.1sec). For example if an Analog Encoder transitions from 0V to 3.3V (1023 units) in

one second, the Analog Velocity will be 102.

17.4. EncRise (a.k.a. Rising Counter)

Every rising edge seen on the Quadrature A pin is counted as a unit.

The velocity units is the change in RisingEdge Count per TvelMea (TvelMeas=0.1sec).

This mode is useful for single direction sensors (tachometer / gear-tooth sensor).

17.5. Duty-Cycle (Throttle)

The Talon SRX uses 10bit resolution for the output duty cycle. This means a -1023 represents

full reverse, +1023 represents full forward, and 0 represents neutral.

The programming API made available in LabVIEW and C++/Java performs the scaling into

percent, so the duty cycle resolution is not necessary for programming purposes. However

when evaluating PIDF gain values, it is helpful to understand how the calculated output of the

closed-loop is interpreted.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 69 2/26/2015

17.6. (Voltage) Ramp Rate

The Talon SRX natively represents Ramp Rate as the change in throttle per TRampRate

(TRampRate=10ms). Throttle is represented as a 10bit signed value (1023 is full forward, -1023 is

full reverse). For example, if the robot application requires motor drive ramping from 0% to

100% to take one second of ramping, the result Ramp Rate would be ([1023 – 0] / 1000ms X

TRampRate) or 10 units.

The programming API made available in LabVIEW and C++/Java performs the scaling into

appropriate units (Voltage or percent).

17.7. (Closed-Loop) Ramp Rate

The Closed Loop Ramp Rate that can be specified in the selected Motor Control Profile is

measured in change in output throttle (from PIDF loop) per TClosedLoopRampRate (TClosedLoopRampRate

=1ms). For example, if the selected Motor Control Profile requires motor drive ramping from 0%

to 100% to take one second of ramping, the result Ramp Rate would be ([1023 – 0] / 1000ms X

TRampRate) or 1 unit.

The programming API made available in LabVIEW and C++/Java performs the scaling into

appropriate units (Voltage or percent).

However when inspecting/setting the Closed-Loop Ramp Rate in the roboRIO webpage, the

units will be shown in output throttle per TClosedLoopRampRate.

17.8. Integral Zone (I Zone)

The motor control profile contains Integral Zone (I Zone), which (when nonzero), is the

maximum error where Integral Accumulation will occur during a closed-loop Mode. If the

Closed-loop error is outside of the I Zone, “I Accum” is automatically cleared. This can prevent

total instability due to integral windup, particularly when tweaking gains.

The units are in the same units as the selected feedback device (Quadrature Encoder, Analog

Potentiometer, Analog Encoder, and EncRise).

17.9. Integral Accumulator (I Accum)

The accumulated sum of Closed-Loop Error. It is accumulated in line with Closed-Loop math

every 1ms.

17.10. Reverse Feedback Sensor

Boolean signal for inverting the selected Feedback Sensor’s position and velocity. This is the

preferred method for keeping the motor and sensor in phase for limit switch, soft limit, and

closed-loop mode.

17.11. Reverse Closed-Loop Output

Boolean signal for inverting the output of the closed-loop PIDF controller. This signal is also

used during slave-follower mode to drive slave Talon in the opposite direction of the master.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 70 2/26/2015

17.12. Closed-Loop Error

Calculated as the difference between target set point and the actual Sensor Position/Velocity.

The units are matched to Analog-In or Encoder depending on which “Feedback Device” and

control mode (position vs. speed) is selected.

17.13. Closed-Loop gains

P gain is specified in throttle per error unit. For example, a value of 102 is ~9.97% (which is

102/1023) throttle per 1 unit of Closed-Loop Error.

I gain is specified in throttle per integrated error. For example, a value of 10 equates to ~0.97%

for each accumulated error (Integral Accumulator). Integral accumulation is done every 1ms.

D gain is specified in throttle per derivative error. For example a value of 102 equates to ~9.97%

(which is 102/1023) per change of Sensor Position/Velocity unit per 1ms.

F gain is multiplied directly by the set point passed into the programming API made available in

LabVIEW and C++/Java. This allows the robot to feed-forward using the target set-point.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 71 2/26/2015

18. How is the closed-loop implemented?
The closed-loop logic is the same regardless of which feedback sensor or closed-loop mode is

selected. The verbatim implementation in the Talon firmware is displayed below.

This includes…

- The logic for PIDF style closed-loop.

- Inverting the output of the closed-loop if enabled in API.

- Capping the output to positive values only IF using a single direction feedback sensor.

- Closed- Loop Ramp Rate, ramping the output if enabled.

Note: The PID_Mux_Unsigned and PID_Mux_Sign routines are merely multiply functions.

/**
 * 1ms process for PIDF closed-loop.
 * @param pid ptr to pid object
 * @param pos signed integral position (or velocity when in velocity mode).
 * The target pos/velocity is ramped into the target member from caller's 'in'.
 * If the CloseLoopRamp in the selected Motor Controller Profile is zero then
 * there is no ramping applied. (throttle units per ms)
 * PIDF is traditional, unsigned coefficients for P,i,D, signed for F.
 * Target pos/velocity is feed forward.
 *
 * Izone gives the abilty to autoclear the integral sum if error is wound up.
 * @param revMotDuringCloseLoopEn nonzero to reverse PID output direction.
 * @param oneDirOnly when using positive only sensor, keep the closed-loop from outputing negative throttle.
 */
void PID_Calc1Ms(pid_t * pid, int32_t pos,uint8_t revMotDuringCloseLoopEn, uint8_t oneDirOnly)
{
 /* grab selected slot */
 MotorControlProfile_t * slot = MotControlProf_GetSlot();
 /* calc error : err = target - pos*/
 int32_t err = pid->target - pos;
 pid->err = err;
 /*abs error */
 int32_t absErr = err;
 if(err < 0)
 absErr = -absErr;
 /* integrate error */
 if(0 == pid->notFirst){
 /* first pass since reset/init */
 pid->iAccum = 0;
 /* also tare the before ramp throt */
 pid->out = BDC_GetThrot(); /* the save the current ramp */
 }else if((!slot->IZone) || (absErr < slot->IZone)){
 /* izone is not used OR absErr is within iZone */
 pid->iAccum += err;
 }else{
 pid->iAccum = 0;
 }
 /* dErr/dt */
 if(pid->notFirst){
 /* calc dErr */
 pid->dErr = (err - pid->prevErr);
 }else{
 /* clear dErr */
 pid->dErr = 0;
 }
 /* P gain X the distance away from where we want */
 pid->outBeforRmp = PID_Mux_Unsigned(err, slot->P);
 if(pid->iAccum && slot->I){
 /* our accumulated error times I gain. If you want the robot to creep up then pass a nonzero Igain */
 pid->outBeforRmp += PID_Mux_Unsigned(pid->iAccum, slot->I);
 }
 /* derivative gain, if you want to react to sharp changes in error (smooth things out). */
 pid->outBeforRmp += PID_Mux_Unsigned(pid->dErr, slot->D);
 /* feedforward on the set point */
 pid->outBeforRmp += PID_Mux_Signed(pid->target, slot->F);
 /* arm for next pass */
 {
 pid->prevErr = err; /* save the prev error for D */
 pid->notFirst = 1; /* already serviced first pass */
 }
 /* if we are using one-direction sensor, only allow throttle in one dir.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 72 2/26/2015

 If it's the wrong direction, use revMotDuringCloseLoopEn to flip it */
 if(oneDirOnly){
 if(pid->outBeforRmp < 0)
 pid->outBeforRmp = 0;
 }
 /* honor the direction flip from control */
 if(revMotDuringCloseLoopEn)
 pid->outBeforRmp = -pid->outBeforRmp;
 /* honor closelooprampratem, ramp out towards outBeforRmp */
 if(0 != slot->CloseLoopRampRate){
 if(pid->outBeforRmp >= pid->out){
 /* we want to increase our throt */
 int32_t deltaUp = pid->outBeforRmp - pid->out;
 if(deltaUp > slot->CloseLoopRampRate)
 deltaUp = slot->CloseLoopRampRate;
 pid->out += deltaUp;
 }else{
 /* we want to decrease our throt */
 int32_t deltaDn = pid->out - pid->outBeforRmp;
 if(deltaDn > slot->CloseLoopRampRate)
 deltaDn = slot->CloseLoopRampRate;
 pid->out -= deltaDn;
 }
 }else{
 pid->out = pid->outBeforRmp;
 }
}

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 73 2/26/2015

19. Motor Safety Helper
The Motor Safety feature works in a similar manner as the other motor controllers. The goal is

to set an expiration time to a given motor controller, such that, if the Set()/set() routine is not

called within the expiration time, the motor controller will disable. Additionally the DS will report

the error and the roboRIO Web-based Configuration Self-Test will report kDisabled as the

mode. As a result, the set routine must be called periodically for sustained motor drive when

motor safety is enabled.

One example where this feature is useful is when laying breakpoints with the debugger while

the robot is enabled and moving. Ideally when a breakpoint lands, its safest to disable motor

drive while the developer performs source-level debugging.

19.1. Best practices

Be sure to test that the time between enabling Motor Safety features, and the first Set()/set()

call is small enough to not risk accidently timing out. Calling Set()/set() immediately after

enabling the feature can be used to ensure transitioning into the enabled modes doesn’t

intermittently cause a timeout.

Even if tripping the motor-safety expiration time is not an expected condition, it’s best to re-

enable the motors somewhere in the source so that the timeouts can be reset easily, for

example in AutonInit()/TeleopInit(). That way normal robot functionality can be safely resumed

after a motor controller expires (usually during source-level debugging).

Additionally if source-level debugging is not required (for example during a competition or if

logging-style debugging is preferred) the motor-safety enable can be turned off.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 74 2/26/2015

19.2. C++ example

SetSafeyEnabled() can be used to turn on this feature. SetExpiration() can be used to set

the expiration time. The default expiration time is typically 100ms.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 75 2/26/2015

19.3. Java example

setSafeyEnabled() can be used to turn on this feature. setExpiration() can be used to set

the expiration time. The default expiration time is typically 100ms.

19.4. LabVIEW Example

The Motor SAFETY CONFIG VI can be used to turn on this feature. Select “Enable” for the

mode and specify the timeout in seconds.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 76 2/26/2015

19.5. RobotDrive

The examples in this section refer to the CANTalon objects directly. However higher level class

types such as RobotDrive can have their own motor safety objects as well. Although

CANTalon safety features default off, the higher level drive objects tend to default safety enable

to on. If you are still witnessing disabled motor drive behavior and Motor Safety Driver Station

Log Messages (see Section 16.14) then you may need to call setSafetyEnabled(false) (or

similar routines/VI) on RobotDrive objects as well. Keep in mind that disabling safety enable

means that motor drive is allowed to continue if a source-level breakpoint halts program flow.

Take the necessary precautions to debug the robot safely or alternatively only enable motor

safety features when performing source level debugging.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 77 2/26/2015

20. Going deeper - How does the framing work?
The Talon periodically transmits four status frames with sensor data at the given periods. This

ensures that certain signals are always available with a deterministic update rate. This also

keeps bus utilization stable.

Similarly the control frame sent to the Talon SRX is periodic and contains almost all the

information necessary for all control modes.

Although the frame rates are default to ensure stable CAN bandwidth, there may be available

API to override the frame rates for performance reasons. If this is done, be sure to check the

CAN performance metrics to ensure custom settings don’t exceed the available CAN bandwidth,

see “CAN bus Utilization and Performance metrics”.

20.1. General Status

The General Status frame has a default period of 10ms, and provides…

-Closed Loop Error: the closed-loop target minus actual position/velocity.

-Throttle: The current 10bit motor output duty cycle (-1023 full reverse to +1023 full forward).

-Forward Limit Switch Pin State

-Reverse Limit Switch Pin State

-Fault bits

-Applied Control Mode

… These signals are accessible in the various get functions in the programming API.

20.2. Feedback Status

The Feedback Status frame has a default period of 20ms, and provides…

-Sensor Position: Position of the selected sensor

-Sensor Velocity: Velocity of the selected sensor

-Motor Current

-Sticky Faults

-Brake Neutral State

-Motor Control Profile Select

… These signals are accessible in the various get functions in the programming API.

20.3. Quadrature Encoder Status

The Quadrature Encoder Status frame has a default period of 100ms.

-Encoder Position: Position of the quadrature sensor

-Encoder Velocity: Velocity of the selected sensor

-Number of rising edges counted on the Index Pin.

-Quad A pin state.

-Quad B pin state.

-Quad Index pin state.

… These signals are accessible in the various get functions in the programming API.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 78 2/26/2015

The quadrature decoder is always engaged, whether the feedback device is selected or not,

and whether a quadrature encoder is actually wired or not. This means that the Quadrature

Encoder signals are always available in programming API regardless of how the Talon is used.

The 100ms update rate is sufficient for logging, instrumentation and debugging. If a faster

update rate is required the robot application can select the appropriate sensor and leverage the

Sensor Position and Sensor Velocity.

20.4. Analog Input / Temperature / Battery Voltage Status

The Analog/Temp/BattV status frame has a default period of 100ms.

-Analog Position: Position of the selected sensor

-Analog Velocity: Velocity of the selected sensor

-Temperature

-Battery Voltage

… These signals are accessible in the various get functions in the programming API.

The Analog to Digital Convertor is always engaged, whether the feedback device is selected or

not, and whether an analog sensor is actually wired or not. This means that the Analog In

signals are always available in programming API regardless of how the Talon is used. The

100ms update rate is sufficient for logging, instrumentation and debugging. If a faster update

rate is required the robot application can select the appropriate sensor and leverage the Sensor

Position and Sensor Velocity.

20.5. Modifying Status Frame Rates

The frame rates of these signals may be modifiable through programming API.

20.5.1. C++

The SetStatusFrameMs() function can be used to modify the frame rate period of a particular

Status Frame. Use the StatusFrameRate… enumerations to specify which frame period to

modify.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 79 2/26/2015

20.5.2. Java

The setStatusFrameMs() function can be used to modify the frame rate period of a particular

Status Frame. Use the StatusFrameRate… enumerations to specify which frame period to

modify.

20.5.3. LabVIEW Example

Although there is no explicit VI for modifying the Status Frame Rates, modifying the frame rates

can be accomplished with the generic CAN TALON SETPRM.

The WPI_CANTalonSRX_SetParameter.vi can be drag and dropped from where it resides.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 80 2/26/2015

20.6. Control Frame

The Talon is primarily controlled by one periodic control frame. The default period of this frame

is 10ms. The control frame provides the Talon…

-which Motor Control Profile Slot to use.

-which control mode (position, velocity, duty cycle, slave mode)

-which feedback sensor to use

-if the feedback sensor should be reversed

-if the closed-loop output should be reversed

-the target/set point or duty cycle or which Talon to follow

-the (voltage) ramp rate

-brake neutral mode override if specified

-limit switch overrides if specified

… These signals are accessible in the various set functions in the programming API.

20.7. Modifying the Control Frame Rate

Depending on the initial release of programming API, the frame rates of these signals may be

modified through programming API. The CANTalon constructor contains a second parameter to

specify control frame period in milliseconds.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 81 2/26/2015

21. Functional Limitations
Functional Limitations describe behavior that deviates than what is documented. Feature

additions and improvements are always possible thanks to the field-upgrade features of the

Talon SRX.

21.1. Firmware 1.1-1.4: Voltage Compensation Mode is not supported.

Feature was not prioritized for FRC 2015 season.

21.2. Firmware 1.1-1.4: Current Closed-Loop Mode is not supported.

Feature was not prioritized for FRC 2015 season.

21.3. Firmware 1.1-1.4: EncFalling Feedback device not supported.

Feature was not prioritized for FRC 2015 season. Firmware does support EncRising Mode

(a.k.a. Rising Edge Counter).

21.4. Firmware 1.1-1.4: ConfigMaxOutputVoltage() not supported.

Feature was not prioritized for FRC 2015 season.

21.5. Firmware 1.1-1.4: ConfigFaultTime() not needed

Firmware only disables drive for limit faults and soft limits (which are time invariant). Motor drive

is not disabled due to current, temp, or battery voltage, therefore there is no fault time.

21.6. Firmware 1.1: Changes in Limit Switch “Normally Open” vs “Normally

Closed” may require power cycle during a specific circumstance.

In the specific situation where programming API overrides a limit switch enable (to true or false),

then changes the NO/NC mode of the same limit switch using programming API, the setting will

not take effect until the motor controller is power cycled, or until the limit switch is no longer

overridden.

The “first” time a new Talon SRX’s NO/NC setting is changed programmatically, power cycle the

Talon so the setting takes effect. After the initial power cycle, new NO/NC setting will be loaded

correctly and match what the robot controller is requesting, therefore Talon will honor the new

NO/NC state from then on.

If not setting NO/NC state programmatically, then no symptoms are observed that deviate from

reference manual. Changing the NO/NC state in the the roboRIO Web-based Configuration

works as expected.

This is fixed in 1.4.

21.7. LabVIEW: EncRising Feedback mode not selectable.

Release software of LabVIEW does not provide option to select EncRising Mode.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 82 2/26/2015

21.8. LabVIEW/C++/Java API: ConfigEncoderCodesPerRev() is not

supported.

Talon does not configure units. Instead the quadrature units are always in 4X mode.

21.9. LabVIEW/C++/Java API: ConfigPotentiometerTurns() is not

supported.

Talon does not configure units. Instead the 3.3V ADC is 10 bit, therefore 0 => 3.3V scales to 0

=> 1023 units.

21.10. Java: Once a Limit Switch is overridden, they can’t be un-overridden.

This does not cause any observable symptoms, just an inconsistency between C++ and Java

API.

21.11. LabVIEW: Modifying status frame rate is not available.

See Section 20.5.3 for an example workaround as well as Functional Limitation Section 21.14.

21.12. LabVIEW: Modifying control frame rate is not available.

This will not be available in the initial season release.

21.13. Firmware 1.1: After selecting “Analog Encoder”, “Sensor Position”

does not reliably decode when sensor wraps around (3.3V => 0V).

Sensor Position may not travel above 1023 or below 0, despite selecting “Analog Encoder” and

spinning the sensor in one direction in a continuous fashion.

This is fixed in 1.4.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 83 2/26/2015

21.14. LabVIEW: Certain SRX VI's running in parallel can affect the GET PID

VI signals.

Avoid using the following VIs in “parallel” to reading the signals provided by GET PID.

Affected VIs:
RESET INTEGRAL ACCUM,

CONFIG LIMIT SWITCH,

CONFIG SOFT LIMIT,

SET PID,

CAN TALON SETPRM,

For example, use a state variable to control whether GET PID is used, or the other mentioned

VIs are used per periodic loop. Otherwise the GET PID signals may erroneously return zero.

Example Workaround

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 84 2/26/2015

21.15. C++: There is no method to reverse the output of a slave Talon SRX.

The initial release of WPILIB C++ does not have a method for setting the “Reverse Closed-Loop
output” signal. This signal is useful for reversing the output of a slave Talon SRX, ensuring it
drives in the opposite direction of its master Talon SRX.

Additionally when using a single-direction sensor in EncRising mode (Rising Counter) this is the
preferred method for keeping motor and sensor in phase since “Reverse Feedback Sensor”
must be false for single-direction sensors.

The following example can be used to work around this limitation by using the core class

CanTalonSrx to directly reverse the output signal. Notice the additional include for

“ctre/CanTalonSRX.h” and the use of SetRevMotDuringCloseLoopEn() to accomplish

reversing the output.

Although using CanTalonSRX is generally not recommended (CANTalon is the top-level class

designed for team-use) this functional limitation is an example where using the lower level class

is beneficial.

Example Workaround – Inverting a Slave Talon SRX

Note: This example also demonstrates using heap class pointers instead of regular member

variables in the interest of covering different methods for allocating objects. Teams may use

non-pointer variables if desired.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 85 2/26/2015

21.16. Firmware <0.36: Limit Switch Faults and Soft Limit Faults may cause

Talon SRX to disable for approximately two seconds during the “first time”.

In the specific situation where a particular limit switch or particular soft limit fault trips for the

“first time” when using a Talon SRX with pre-FRC2015-kickoff firmware, the Talon SRX may

blink orange for a two second period of time, during which it behaves as though it’s disabled.

This can only happen when a Talon SRX is initially out-of-the-box or when a Talon SRX’s sticky

faults have been cleared (using the roboRIO web-based configuration or through programming

API). The cause is due to the way that firmware earlier than 0.36 saves the sticky faults in

persistent memory.

Since teams using CAN are required to update to at least 1.1, this functional limitation will not

occur.

Also Talon SRXs used with PWM have no method for clearing sticky faults, so this symptom will

only appear once and then never occur again. Additionally PWM-use Talons can easily be

firmware updated using the method described in Talon SRX User’s Guide Section 1.3.4.2.

Fixed in 0.36.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 86 2/26/2015

21.17. Firmware 1.4: When setting the “Sensor Position” of an analog

encoder, multiple set commands are required.

In the specific situation of setting the “Sensor Position” when the selected feedback device is an

analog encoder, the robot application will have to send two set commands to reliably change the

sensor position. Additionally there must be at least 9 ms between the two set commands.

The symptom occurs when a sensor position is changed by a large enough value to cause a

false detection of an analog encoder wraparound. By re-setting the sensor position to the same

new value a second time after the false wrap around is detected, the analog encoder position

can be reliably modified.

In C++/Java this can be done by calling the SetPosition()/setPosition() function twice with

the same parameter, and ensuring there is at least 9 ms between the calls.

In LabVIEW this can be accomplished by using state (shift register) to count the number times

to consecutively set the Sensor Position. The following example demonstrates clearing the

sensor position when the “Clear Position” front panel button is pressed.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 87 2/26/2015

21.18. roboRIO power up: roboRIO startup software may not be ready for

Robot Application. As a result, certain resources (like CAN actuators) may

not enable on teleOp-Enabled after a roboRIO power boot.

This is a specific race condition that causes the RIO’s start up processes to boot in a different
order then intended. The symptom a team would see is: we power cycled the robot, enabled,
and some of our CAN devices (Talon SRX for example) does not enabled (LEDs blink orange).
Although the circumstances are intermittent, the workaround to guarantee the Robot Application
is robust is simple. In the Disable Loop, “set” one of the following signals periodically to ensure
the roboRIO background process is well-aware of what CAN actuators the Robot Application
intends to use.

Setting any of these signals in the disabled loop will meet the workaround requirements. Also
setting these will have no effect on the Talon itself since these signals are not sent over CAN
bus until the robot is enabled. The signals that can be used for this workaround are…
Brake Mode during Neutral,

Throttle or Closed-Loop set point,

Control Mode,

Limit Switch Enable Overrides,

Feedback Device Select,

(Voltage) Ramp Rate,

Reverse Feedback Sensor,

Reverse Closed-Loop Output,

Profile Slot Select,

These signals exist in the periodic control frame. As such, setting them will not block or hold up
program execution.

In this C++ workaround example, we redundantly set the brake mode to its default setting. The
brake mode already defaults to kNeutralMode_Jumper so the actual behavior of the Talon
hasn’t changed, and no additional CAN traffic is generated since the control frame is unsolicited
and periodic.

In this example any brake mode will work and the new signal value does not have to be
different than the original signal value.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 88 2/26/2015

21.19. roboRIO power up: User should manually refresh the web-based

configuration after rebooting roboRIO.

It is recommended to manually refresh the web browser if the roboRIO has been reset or power

cycled. This ensures that the web browser and roboRIO are synchronized well. Otherwise

device icons may not match the device type in the web-based config.

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 89 2/26/2015

22. CRF Firmware Revision Information

CRF

Rev

Date Description

1.4 20-Jan-2015 Functional Limitation 21.6 fixed.

Functional Limitation 21.13 fixed.

Analog Encoder/Potentiometer Velocity uses a rolling window average to reduce noise.

Analog Encoder/Potentiometer Position averaged to reduce noise.

1.1 26-Dec-2014 Initial Release for 2015 FRC Season

217-8080 TALON SRX Software Reference Manual 2/26/2015

Cross The Road Electronics Page 90 2/26/2015

23. Document Revision Information

Rev

Date

Description

1.5 26-Feb-2015 -Added Section 16.27

-Added Section 16.28

1.4 17-Feb-2015 -Added screenshot of wrong CRF in Section 2.3.3.

-Section 13.1.1 added.

-Section 16.25 added.

-Section 16.26 added.

-Section 19.5 added.

-Section 21.18 added.

-Section 21.19 added.

1.3 1-Feb-2015 -Section 6.4 added.

-Section 12.2.3 added.

-Section 16.24 added.

-Section 21.16 added.

-Section 21.17 added.

1.2 23-Jan-2015 -Section 21.15 added. Reversing a slave Talon in C++.

-Section 3.6 Added for changing Talon SRX mode.

1.1 20-Jan-2015 -Section 22 moved to Section 23.

-New Section 22 added for CRF Firmware.

-Updates relating to CRF 1.4.

-Section 21.14 Added. Workaround for GET PID VI.

-Section 20.5.3 Added. Example for LabVIEW status

frame modification.

-Section 2.5 Added. Custom Device Names.

-Section 13, Clarifying statement added for CRF 1.4.

1.0 26-Dec-2014 -Initial Release for 2015 FRC Season

	1. CAN bus Device Basics
	2. roboRIO Web-based Configuration: Firmware and diagnostics
	2.1. Device ID ranges
	2.2. Common ID Talons
	2.3. Firmware Field-upgrade a Talon SRX
	2.3.1. When I update firmware, I get “You do not have permissions…”
	2.3.2. What if Firmware Field-upgrade is interrupted?
	2.3.3. Other Field-upgrade Failure Modes
	2.3.4. Where to get CRF files?

	2.4. Self-Test
	2.4.1. Clearing Sticky Faults

	2.5. Custom Names
	2.5.1. Re-default custom name

	3. Creating a Talon Object (and basic drive)
	3.1. Programming API and Device ID
	3.2. New Classes/Virtual Instruments
	3.3. LabVIEW
	3.4. C++
	3.5. Java
	3.6 Changing Mode
	3.6.1. LabVIEW
	3.6.2. C++
	3.6.3. Java
	3.6.4. Check Control Mode with Self-Test

	4. Limit Switch and Neutral Brake Mode
	4.1. Default Settings
	4.2. roboRIO Web-based Configuration: Limit Switch and Brake
	4.3. Overriding Brake and Limit Switch with API
	4.3.1. LabVIEW
	4.3.2. C++
	4.3.3. Java

	4.4. Changing limit switch mode between “Normally Open” or “Normally Closed”
	4.4.1. LabVIEW
	4.4.2. C++
	4.4.3. Java

	5. Getting Status and Signals
	5.1. LabVIEW
	5.2. C++
	5.3. Java

	6. Setting the Ramp Rate
	6.1. LabVIEW
	6.2. C++
	6.3. Java
	6.4. What is the slowest ramp possible?

	7. Selecting a Feedback Device
	7.1. LabVIEW
	7.2. C++
	7.3. Java
	7.4. Reversing sensor direction, best practices.

	8. Soft Limits
	8.1. LabVIEW
	8.2. C++
	8.3. Java

	9. Follower Mode
	9.1. LabVIEW
	9.2. C++
	9.3. Java

	10. Closed-Loop Modes
	11. Motor Control Profile Parameters
	11.1. Persistent storage and Reset/Startup behavior
	11.2. Inspecting Signals

	12. Position/Velocity Closed-Loop Example
	12.1. Setting Motor Control Profile Parameters
	12.1.1. LabVIEW
	12.1.2. C++
	12.1.3. Java

	12.2. Clearing Integral Accumulator (I Accum)
	12.2.1. LabVIEW
	12.2.2. C++/Java
	12.2.3. Is Integral Accum cleared any other time?

	13. Setting Sensor Position
	13.1. LabVIEW
	13.1.1. Motor Enable

	13.2. C++
	13.3. Java

	14. Fault Flags
	14.1. LabVIEW
	14.2. C++
	14.3. Java

	15. CAN bus Utilization/Error metrics
	15.1. How many Talons can we use?

	16. Troubleshooting Tips and Common Questions
	16.1. When I press the B/C CAL button, the brake LED does not change, neutral behavior does not change.
	16.2. Changing certain settings in Disabled Loop doesn’t take effect until the robot is enabled.
	16.3. The robot is TeleOperated/Autonomous enabled, but the Talon SRX continues to blink orange (disabled).
	16.4. When I attach/power a particular Talon SRX to CAN bus, The LEDs on every Talon SRX occasionally blink red. Motor drive seems normal.
	16.5. If I have a slave Talon SRX following a master Talon SRX, and the master Talon SRX is disconnected/unpowered, what will the slave Talon SRX do?
	16.6. Is there any harm in creating a software Talon SRX for a device ID that’s not on the CAN bus? Will removing a Talon SRX from the CAN bus adversely affect other CAN devices?
	16.7. Driver Station log says Error on line XXX of CANTalon.cpp
	16.8. Driver Station log says -44087 occurred at NetComm...
	16.9. Why are there multiple ways to get the same sensor data? GetEncoder() versus GetSensor()?
	16.10. So there are two types of ramp rate?
	16.11. Why are there two feedback “analog” device types: Analog Encoder and Analog Potentiometer?
	16.12. After changing the mode in C++/Java, motor drive no longer works. Self-Test says “No Drive” mode?
	16.13. All CAN devices have red LEDs. Recommended Preliminary checks for CAN bus.
	16.14. Driver Station reports “MotorSafetyHelper.cpp: A timeout…”, motor drive no longer works. roboRIO Web-based Configuration says “No Drive” mode? Driver Station reports error -44075?
	16.15. Motor drive stutters, misbehaves? Intermittent enable/disable?
	16.16. What to expect when devices are disconnected in roboRIO’s Web-based Configuration. Failed Self-Test?
	16.17. When I programmatically change the “Normally Open” vs “Normally Closed” state of a limit switch, the Talon SRX blinks orange momentarily.
	16.18. How do I get the raw ADC value (or voltage) on the Analog Input pin?
	16.19. Recommendation for using relative sensors.
	16.20. Does anything get reset or lost after firmware updates?
	16.21. Analog Position seems to be stuck around ~100 units?
	16.22. Limit switch behavior doesn’t match expected settings.
	16.23. How fast can I control just ONE Talon SRX?
	16.24. Expected symptoms when there is excessive signal reflection.
	16.25. LabVIEW application reads incorrect Sensor Position. Sensor Position jumps to zero or is missing counts.
	16.26. CAN devices do not appear in the roboRIO Web-based config.
	16.27. After a power boot of the robot, and then enabling, occasionally a single CAN actuator does not enable (blinks orange as though it is disabled). Issue corrects itself after pressing “Restart Robot Code” in Driver Station and re-enabling robot.
	16.28. Occasionally when a firmware update is attempted we get an immediate error. Talon SRX is blinking green/orange. However when we re-imaged the RIO the issue went away?

	17. Units and Signal Definitions
	17.1. (Quadrature) Encoder Position
	17.2. Analog Potentiometer
	17.3. Analog Encoder, “Analog-In Position”
	17.4. EncRise (a.k.a. Rising Counter)
	17.5. Duty-Cycle (Throttle)
	17.6. (Voltage) Ramp Rate
	17.7. (Closed-Loop) Ramp Rate
	17.8. Integral Zone (I Zone)
	17.9. Integral Accumulator (I Accum)
	17.10. Reverse Feedback Sensor
	17.11. Reverse Closed-Loop Output
	17.12. Closed-Loop Error
	17.13. Closed-Loop gains

	18. How is the closed-loop implemented?
	19. Motor Safety Helper
	19.1. Best practices
	19.2. C++ example
	19.3. Java example
	19.4. LabVIEW Example
	19.5. RobotDrive

	20. Going deeper - How does the framing work?
	20.1. General Status
	20.2. Feedback Status
	20.3. Quadrature Encoder Status
	20.4. Analog Input / Temperature / Battery Voltage Status
	20.5. Modifying Status Frame Rates
	20.5.1. C++
	20.5.2. Java
	20.5.3. LabVIEW Example

	20.6. Control Frame
	20.7. Modifying the Control Frame Rate

	21. Functional Limitations
	21.1. Firmware 1.1-1.4: Voltage Compensation Mode is not supported.
	21.2. Firmware 1.1-1.4: Current Closed-Loop Mode is not supported.
	21.3. Firmware 1.1-1.4: EncFalling Feedback device not supported.
	21.4. Firmware 1.1-1.4: ConfigMaxOutputVoltage() not supported.
	21.5. Firmware 1.1-1.4: ConfigFaultTime() not needed
	21.6. Firmware 1.1: Changes in Limit Switch “Normally Open” vs “Normally Closed” may require power cycle during a specific circumstance.
	21.7. LabVIEW: EncRising Feedback mode not selectable.
	21.8. LabVIEW/C++/Java API: ConfigEncoderCodesPerRev() is not supported.
	21.9. LabVIEW/C++/Java API: ConfigPotentiometerTurns() is not supported.
	21.10. Java: Once a Limit Switch is overridden, they can’t be un-overridden.
	21.11. LabVIEW: Modifying status frame rate is not available.
	21.12. LabVIEW: Modifying control frame rate is not available.
	21.13. Firmware 1.1: After selecting “Analog Encoder”, “Sensor Position” does not reliably decode when sensor wraps around (3.3V => 0V).
	21.14. LabVIEW: Certain SRX VI's running in parallel can affect the GET PID VI signals.
	21.15. C++: There is no method to reverse the output of a slave Talon SRX.
	21.16. Firmware <0.36: Limit Switch Faults and Soft Limit Faults may cause Talon SRX to disable for approximately two seconds during the “first time”.
	21.17. Firmware 1.4: When setting the “Sensor Position” of an analog encoder, multiple set commands are required.
	21.18. roboRIO power up: roboRIO startup software may not be ready for Robot Application. As a result, certain resources (like CAN actuators) may not enable on teleOp-Enabled after a roboRIO power boot.
	21.19. roboRIO power up: User should manually refresh the web-based configuration after rebooting roboRIO.

	22. CRF Firmware Revision Information
	23. Document Revision Information

